2,478 research outputs found
Orbital frustration at the origin of the magnetic behavior in LiNiO2
We report on the ESR, magnetization and magnetic susceptibility measurements
performed over a large temperature range, from 1.5 to 750 K, on high-quality
stoichiometric LiNiO2. We find that this compound displays two distinct
temperature regions where its magnetic behavior is anomalous. With the help of
a statistical model based on the Kugel'-Khomskii Hamiltonian, we show that
below T_of ~ 400 K, an orbitally-frustrated state characteristic of the
triangular lattice is established. This then gives a solution to the
long-standing controversial problem of the magnetic behavior in LiNiO2.Comment: 5 pages, 5 figures, RevTex, accepted in PR
Localized versus itinerant magnetic moments in Na0.72CoO2
Based on experimental 59Co-NMR data in the temperature range between 0.1 and
300 K, we address the problem of the character of the Co 3d-electron based
magnetism in Na0.7CoO2. Temperature dependent 59Co-NMR spectra reveal different
Co environments below 300 K and their differentiation increases with decreasing
temperature. We show that the 23Na- and 59Co-NMR data may consistently be
interpreted by assuming that below room temperature the Co 3d-electrons are
itinerant. Their magnetic interaction appears to favor an antiferromagnetic
coupling, and we identify a substantial orbital contribution corb to the
d-electron susceptibility. At low temperatures corb seems to acquire some
temperature dependence, suggesting an increasing influence of spin-orbit
coupling. The temperature dependence of the spin-lattice relaxation rate
T1-1(T) confirms significant variations in the dynamics of this electronic
subsystem between 200 and 300K, as previously suggested. Below 200 K, Na0.7CoO2
may be viewed as a weak antiferromagnet with TN below 1 K but this scenario
still leaves a number of open questions.Comment: 8.7 pages, 6 Figures, submitted to Phys. Rev.
Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2
The determination by powder neutron diffraction of the ambient temperature
crystal structures of compounds in the NaxCoO2 family, for 0.3 < x <= 1.0, is
reported. The structures consist of triangular CoO2 layers with Na ions
distributed in intervening charge reservoir layers. The shapes of the CoO6
octahedra that make up the CoO2 layers are found to be critically dependent on
the electron count and on the distribution of the Na ions in the intervening
layers, where two types of Na sites are available. Correlation of the shapes of
cobalt-oxygen octahedra, the Na ion positions, and the electronic phase diagram
in NaxCoO2 is made, showing how structural and electronic degrees of freedom
can be coupled in electrically conducting triangular lattice systems.Comment: 15 pages, 1 tables, 6 figures Submitted to Physical Review
Searching for Stable Na-ordered Phases in Single Crystal Samples of gamma-NaxCoO2
We report on the preparation and characterization of single crystal gamma
phase NaxCoO2 with 0.25 < x < 0.84 using a non-aqueous electrochemical
chronoamperemetry technique. By carefully mapping the overpotential versus x
(for x < 0.84), we find six distinct stable phases with Na levels corresponding
to x ~ 0.75, 0.71, 0.50, 0.43, 0.33 and 0.25. The composition with x ~0.55
appears to have a critical Na concentration which separates samples with
different magnetic behavior as well as different Na ion diffusion mechanisms.
Chemical analysis of an aged crystal reveals different Na ion diffusion
mechanisms above and below x_c ~ 0.53, where the diffusion process above x_c
has a diffusion coefficient about five times larger than that below x_c. The
series of crystals were studied with X-ray diffraction, susceptibility, and
transport measurements. The crystal with x = 0.5 shows a weak ferromagnetic
transition below T=27 K in addition to the usual transitions at T = 51 K and 88
K. The resistivity of the Curie-Weiss metallic Na0.71CoO2 composition has a
very low residual resistivity, which attests to the high homogeneity of the
crystals prepared by this improved electrochemical method. Our results on the
various stable crystal compositions point to the importance of Na ion ordering
across the phase diagram.Comment: 9 pages, 9 figure
Size-dependent spinodal and miscibility gaps for intercalation in nano-particles
Using a recently-proposed mathematical model for intercalation dynamics in
phase-separating materials [Singh, Ceder, Bazant, Electrochimica Acta 53, 7599
(2008)], we show that the spinodal and miscibility gaps generally shrink as the
host particle size decreases to the nano-scale. Our work is motivated by recent
experiments on the high-rate Li-ion battery material LiFePO4; this serves as
the basis for our examples, but our analysis and conclusions apply to any
intercalation material. We describe two general mechanisms for the suppression
of phase separation in nano-particles: (i) a classical bulk effect, predicted
by the Cahn-Hilliard equation, in which the diffuse phase boundary becomes
confined by the particle geometry; and (ii) a novel surface effect, predicted
by chemical-potential-dependent reaction kinetics, in which
insertion/extraction reactions stabilize composition gradients near surfaces in
equilibrium with the local environment. Composition-dependent surface energy
and (especially) elastic strain can contribute to these effects but are not
required to predict decreased spinodal and miscibility gaps at the nano-scale
Unconventional Charge Ordering in Na0.70CoO2 below 300 K
We present the results of measurements of the dc-magnetic susceptibility
chi(T) and the 23Na-NMR response of Na_{0.70}CoO_{2} at temperatures between 50
and 340 K. The chi(T) data suggest that for T > 75 K, the Co ions adopt an
effective configuration of Co^{3.4+}. The 23Na-NMR response reveals pronounced
anomalies near 250 and 295 K, but no evidence for magnetic phase transitions is
found in chi(T). Our data suggest the onset of a dramatic change in the Co
3d-electron spin dynamics at 295 K. This process is completed at 230 K. Our
results maybe interpreted as evidence for either a tendency to electron
localization or an unconventional charge-density wave phenomenon within the
cobalt oxide layer, CoO_2, 3d electron system near room temperature.Comment: 4 pages, 4 figures, re-submitted to Physical Review Letters. The
manuscript has been revised following the recommendations of the referees.
The discussion section contains substantial change
- …