6,289 research outputs found
In-plane effects on segmented-mirror control
Extremely large optical telescopes are being designed with primary mirrors composed of hundreds of segments. The “out-of-plane” piston, tip, and tilt degrees of freedom of each segment are actively controlled using feedback from relative height measurements between neighboring segments. The “in-plane” segment translations and clocking (rotation) are not actively controlled; however, in-plane motions affect the active control problem in several important ways, and thus need to be considered. We extend earlier analyses by constructing the “full” interaction matrix that relates the height, gap, and shear motion at sensor locations to all six degrees of freedom of segment motion, and use this to consider three effects. First, in-plane segment clocking results in height discontinuities between neighboring segments that can lead to a global control system response. Second, knowledge of the in-plane motion is required both to compensate for this effect and to compensate for sensor installation errors, and thus, we next consider the estimation of in-plane motion and the associated noise propagation characteristics. In-plane motion can be accurately estimated using measurements of the gap between segments, but with one unobservable mode in which every segment clocks by an equal amount. Finally, we examine whether in-plane measurements (gap and/or shear) can be used to estimate out-of-plane segment motion; these measurements can improve the noise multiplier for the “focus-mode” of the segmented-mirror array, which involves pure dihedral angle changes between segments and is not observable with only height measurements
Short report: molecular markers associated with Plasmodium falciparum resistance to sulfadoxine-pyrimethamine in the Democratic Republic of Congo.
Sulfadoxine-pyrimethamine (SP) is the first line antimalarial treatment in the Democratic Republic of Congo. Using polymerase chain reaction, we assessed the prevalence of mutations in the dihydrofolate reductase (dhfr) (codons 108, 51, 59) and dihydropteroate synthase (dhps) (codons 437, 540) genes of Plasmodium falciparum, which have been associated with resistance to pyrimethamine and sulfadoxine, respectively. Four hundred seventy-four patients were sampled in Kilwa (N = 138), Kisangani (N = 112), Boende (N = 106), and Basankusu (N = 118). The proportion of triple mutations dhfr varied between sites but was always > 50%. The proportion of dhps double mutations was < 20%, with some sites as low as 0.9%. A quintuple mutation was present in 12.8% (16/125) samples in Kilwa; 11.9% (13/109) in Kisangani, 2.9% (3/102) in Boende, and 0.9% (1/112) in Basankusu. These results suggest high resistance to pyrimethamine alone or combined with sulfadoxine. Adding artesunate to SP does not seem a valid alternative to the current monotherapy
BATSE Soft Gamma-Ray Observations of GROJ0422+32
We report results of a comprehensive study of the soft gamma-ray (30 keV to
1.7 MeV) emission of GROJ0422+32 during its first known outburst in 1992. These
results were derived from the BATSE earth-occultation database with the JPL
data analysis package, EBOP (Enhanced BATSE Occultation Package). Results
presented here focus primarily on the long-term temporal and spectral
variability of the source emission associated with the outburst. The light
curves with 1-day resolution in six broad energy-bands show the high-energy
flux (>200 keV) led the low-energy flux (<200 keV) by ~5 days in reaching the
primary peak, but lagged the latter by ~7 days in starting the declining phase.
We confirm the "secondary maximum" of the low-energy (<200 keV) flux at TJD
8970-8981, ~120 days after the first maximum. Our data show that the "secondary
maximum" was also prominent in the 200-300 keV band, but became less pronounced
at higher energies. During this 200-day period, the spectrum evolved from a
power-law with photon index of 1.75 on TJD 8839, to a shape that can be
described by a Comptonized model or an exponential power law below 300 keV,
with a variable power-law tail above 300 keV. The spectrum remained roughly in
this two-component shape until ~9 November (TJD 8935) and then returned to the
initial power-law shape with an index of ~2 until the end of the period. The
correlation of the two spectral shapes with the high and low luminosities of
the soft gamma-ray emission is strongly reminiscent of that seen in Cygnus X-1.
We interpret these results in terms of the Advection Dominated Accretion Flow
(ADAF) model with possibly a "jet-like" region that persistently produced the
non-thermal power-law gamma rays observed throughout the event.Comment: 40 pages total, including 10 figures and 2 table
Stability Analysis of Cell Dynamics in Leukemia
Cataloged from PDF version of article.In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations
Stability analysis of cell dynamics in leukemia
In order to better understand the dynamics of acute leukemia, and in particular to find theoretical conditions for the efficient delivery of drugs in acute myeloblastic leukemia, we investigate stability of a system modeling its cell dynamics. The overall system is a cascade connection of sub-systems consisting of distributed delays and static nonlinear feedbacks. Earlier results on local asymptotic stability are improved by the analysis of the linearized system around the positive equilibrium. For the nonlinear system, we derive stability conditions by using Popov, circle and nonlinear small gain criteria. The results are illustrated with numerical examples and simulations. © 2012 EDP Sciences
A Search for Exozodiacal Dust and Faint Companions Near Sirius, Procyon, and Altair with the NICMOS Coronagraph
We observed Sirius, Altair, and Procyon with the NICMOS Coronagraph on the
Hubble Space Telescope to look for scattered light from exozodiacal dust and
faint companions within 10 AU from these stars. We did not achieve enough
dynamic range to surpass the upper limits set by IRAS on the amount of
exo-zodiacal dust in these systems, but we did set strong upper limits on the
presence of nearby late-type and sub-stellar companions.Comment: 10 pages, 4 figure
Smoothed Particle Hydrodynamics Simulations of Apsidal and Nodal Superhumps
In recent years a handful of systems have been observed to show "negative"
(nodal) superhumps, with periods slightly shorter than the orbital period. It
has been suggested that these modes are a consequence of the slow retrograde
precession of the line of nodes in a disk tilted with respect to the orbital
plane. Our simulations confirm and refine this model: they suggest a roughly
axisymmetric, retrogradely-precessing, tilted disk that is driven at a period
slightly less than half the orbital period as the tidal field of the orbiting
secondary encounters in turn the two halves of the disk above and below the
midplane. Each of these passings leads to viscous dissipation on one face of an
optically-thick disk -- observers on opposite sides of the disk would each
observe one brightening per orbit, but 180 degrees out of phase with each
other.Comment: 11 pages. Accepted for publication in The ApJ Letter
On the Invariant Theory of Weingarten Surfaces in Euclidean Space
We prove that any strongly regular Weingarten surface in Euclidean space
carries locally geometric principal parameters. The basic theorem states that
any strongly regular Weingarten surface is determined up to a motion by its
structural functions and the normal curvature function satisfying a geometric
differential equation. We apply these results to the special Weingarten
surfaces: minimal surfaces, surfaces of constant mean curvature and surfaces of
constant Gauss curvature.Comment: 16 page
- …