6,299 research outputs found
Chemical equilibrium study at SPS 158A GeV
A detailed study of chemical freeze-out in nucleus-nucleus collisions at beam
energy 158A GeV is presented. By analyzing hadronic multiplicities within the
statistical hadronization approach, the chemical equilibration of p-p, C-C,
Si-Si and Pb-Pb systems is studied as a function of the number of participating
nucleons in the system. Additionally, Two Component statistical hadronization
model is applied to the data and is found to be able to explain the observed
strangeness hadronic phase space under-saturation.Comment: 4 pages, 3 figures to appear in the proceedings of the ''Strangeness
in Quark Matter 2004'' conferenc
Highlights of the Beam Energy Scan from STAR
The first part of the beam energy scan (BES) program at RHIC was successfully
completed in the years 2010 and 2011. First STAR results from particle yield
measurements are in good agreement with previously published data from SPS and
AGS experiments whereas other results like azimuthal HBT and
event-by-event fluctuations differ at some energies. In addition, new
observations like the centrality dependence of chemical freeze-out parameters
( and ) or the smoothly increasing difference with
decreasing energy in the elliptic flow between particles and
corresponding anti-particles, are discussed.Comment: CPOD 2011 proceedings, 5 pages, 4 figure
R-matrix theory of driven electromagnetic cavities
Resonances of cylindrical symmetric microwave cavities are analyzed in
R-matrix theory which transforms the input channel conditions to the output
channels. Single and interfering double resonances are studied and compared
with experimental results, obtained with superconducting microwave cavities.
Because of the equivalence of the two-dimensional Helmholtz and the stationary
Schroedinger equations, the results present insight into the resonance
structure of regular and chaotic quantum billiards.Comment: Revtex 4.
Long-range behavior of the optical potential for the elastic scattering of charged composite particles
The asymptotic behavior of the optical potential, describing elastic
scattering of a charged particle off a bound state of two charged, or
one charged and one neutral, particles at small momentum transfer
or equivalently at large intercluster distance
, is investigated within the framework of the exact three-body
theory. For the three-charged-particle Green function that occurs in the exact
expression for the optical potential, a recently derived expression, which is
appropriate for the asymptotic region under consideration, is used. We find
that for arbitrary values of the energy parameter the non-static part of the
optical potential behaves for as
. From this we derive for the
Fourier transform of its on-shell restriction for the behavior , i.e.,
dipole or quadrupole terms do not occur in the coordinate-space asymptotics.
This result corroborates the standard one, which is obtained by perturbative
methods. The general, energy-dependent expression for the dynamic
polarisability is derived; on the energy shell it reduces to the
conventional polarisability which is independent of the energy. We
emphasize that the present derivation is {\em non-perturbative}, i.e., it does
not make use of adiabatic or similar approximations, and is valid for energies
{\em below as well as above the three-body dissociation threshold}.Comment: 35 pages, no figures, revte
System Size Dependence of Particle Production at the SPS
Recent results on the system size dependence of net-baryon and hyperon
production as measured at the CERN SPS are discussed. The observed Npart
dependences of yields, but also of dynamical properties, such as average
transverse momenta, can be described in the context of the core corona
approach. Other observables, such as antiproton yields and net-protons at
forward rapidities, do not follow the predictions of this model. Possible
implications for a search for a critical point in the QCD phase diagram are
discussed. Event-by-event fluctuations of the relative core to corona source
contributions might influence fluctuation observables (e.g. multiplicity
fluctuations). The magnitude of this effect is investigated.Comment: 10 pages, 4 figurs. Proceedings of the 6th International Workshop on
Critical Point and Onset of Deconfinement in Dubna, Aug. 201
Triangle Diagram with Off-Shell Coulomb T-Matrix for (In-)Elastic Atomic and Nuclear Three-Body Processes
The driving terms in three-body theories of elastic and inelastic scattering
of a charged particle off a bound state of two other charged particles contain
the fully off-shell two-body Coulomb T-matrix describing the intermediate-state
Coulomb scattering of the projectile with each of the charged target particles.
Up to now the latter is usually replaced by the Coulomb potential, either when
using the multiple-scattering approach or when solving three-body integral
equations. General properties of the exact and the approximate on-shell driving
terms are discussed, and the accuracy of this approximation is investigated
numerically, both for atomic and nuclear processes including bound-state
excitation, for energies below and above the corresponding three-body
dissociation threshold, over the whole range of scattering angles.Comment: 22 pages, 11 figures, figures can be obtained upon request from the
Authors, revte
proton-deuteron elastic scattering above the deuteron breakup
The complex Kohn variational principle and the (correlated) hyperspherical
harmonics method are applied to study the proton-deuteron elastic scattering at
energies above the deuteron breakup threshold. Results for the elastic cross
section and various elastic polarization observables have been obtained by
fully taking into account the long-range effect of the Coulomb interaction and
using a realistic nucleon-nucleon interaction model. Detailed comparison
between the theoretical predictions and the accurate and abundant
proton-deuteron experimental data can now be performed.Comment: 6 pages, 2 figure
Bose Einstein Condensate in a Box
Bose-Einstein condensates have been produced in an optical box trap. This
novel optical trap type has strong confinement in two directions comparable to
that which is possible in an optical lattice, yet produces individual
condensates rather than the thousands typical of a lattice. The box trap is
integrated with single atom detection capability, paving the way for studies of
quantum atom statistics.Comment: 4 pages, 5 figure
Analyzing symmetry breaking within a chaotic quantum system via Bayesian inference
Bayesian inference is applied to the level fluctuations of two coupled
microwave billiards in order to extract the coupling strength. The coupled
resonators provide a model of a chaotic quantum system containing two coupled
symmetry classes of levels. The number variance is used to quantify the level
fluctuations as a function of the coupling and to construct the conditional
probability distribution of the data. The prior distribution of the coupling
parameter is obtained from an invariance argument on the entropy of the
posterior distribution.Comment: Example from chaotic dynamics. 8 pages, 7 figures. Submitted to PR
Ray chaos in optical cavities based upon standard laser mirrors
We present a composite optical cavity made of standard laser mirrors; the
cavity consists of a suitable combination of stable and unstable cavities. In
spite of its very open nature the composite cavity shows ray chaos, which may
be either soft or hard, depending on the cavity configuration. This opens a
new, convenient route for experimental studies of the quantum aspects of a
chaotic wave field.Comment: 4 pages, 3 figures, 1 tabl
- …