4,684 research outputs found
Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test
We deal with the test of the general relativistic gravitomagnetic
Lense-Thirring effect currently ongoing in the Earth's gravitational field with
the combined nodes \Omega of the laser-ranged geodetic satellites LAGEOS and
LAGEOS II.
One of the most important source of systematic uncertainty on the orbits of
the LAGEOS satellites, with respect to the Lense-Thirring signature, is the
bias due to the even zonal harmonic coefficients J_L of the multipolar
expansion of the Earth's geopotential which account for the departures from
sphericity of the terrestrial gravitational potential induced by the
centrifugal effects of its diurnal rotation. The issue addressed here is: are
the so far published evaluations of such a systematic error reliable and
realistic? The answer is negative. Indeed, if the difference \Delta J_L among
the even zonals estimated in different global solutions (EIGEN-GRACE02S,
EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008,
AIUB-GRACE01S) is assumed for the uncertainties \delta J_L instead of using
their more or less calibrated covariance sigmas \sigma_{J_L}, it turns out that
the systematic error \delta\mu in the Lense-Thirring measurement is about 3 to
4 times larger than in the evaluations so far published based on the use of the
sigmas of one model at a time separately, amounting up to 37% for the pair
EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based
models yields bias as large as about 25-30%. The major discrepancies still
occur for J_4, J_6 and J_8, which are just the zonals the combined
LAGEOS/LAGOES II nodes are most sensitive to.Comment: LaTex, 12 pages, 12 tables, no figures, 64 references. To appear in
Central European Journal of Physics (CEJP
LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection
In this paper we analyze quantitatively the concept of LAGEOS--type
satellites in critical supplementary orbit configuration (CSOC) which has
proven capable of yielding various observables for many tests of General
Relativity in the terrestrial gravitational field, with particular emphasis on
the measurement of the Lense--Thirring effect.Comment: LaTex2e, 20 pages, 7 Tables, 6 Figures. Changes in Introduction,
Conclusions, reference added, accepted for publication in Classical and
Quantum Gravit
On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging
In this paper we present a rather extensive error budget for the difference
of the perigees of a pair of supplementary SLR satellites aimed to the
detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to
the abstract, Introduction and Conclusions. References updated, typos
corrected. Equation corrected. To appear in General Relativity and
Gravitatio
On the trace identity in a model with broken symmetry
Considering the simple chiral fermion meson model when the chiral symmetry is
explicitly broken, we show the validity of a trace identity -- to all orders of
perturbation theory -- playing the role of a Callan-Symanzik equation and which
allows us to identify directly the breaking of dilatations with the trace of
the energy-momentum tensor. More precisely, by coupling the quantum field
theory considered to a classical curved space background, represented by the
non-propagating external vielbein field, we can express the conservation of the
energy-momentum tensor through the Ward identity which characterizes the
invariance of the theory under the diffeomorphisms. Our ``Callan-Symanzik
equation'' then is the anomalous Ward identity for the trace of the
energy-momentum tensor, the so-called ``trace identity''.Comment: 11 pages, Revtex file, final version to appear in Phys.Rev.
The impact of the new CHAMP and GRACE Earth gravity models on the measurement of the general relativistic Lense--Thirring effect with the LAGEOS and LAGEOS II satellites
Among the effects predicted by the General Theory of Relativity for the
orbital motion of a test particle, the post-Newtonian gravitomagnetic
Lense-Thirring effect is very interesting and, up to now, there is not yet an
undisputable experimental direct test of it. To date, the data analysis of the
orbits of the existing geodetic LAGEOS and LAGEOS II satellites has yielded a
test of the Lense-Thirring effect with a claimed accuracy of 20%-30%. According
to some scientists such estimates could be optimistic. Here we wish to discuss
the improvements obtainable in this measurement, in terms of reliability of the
evaluation of the systematic error and reduction of its magnitude, due to the
new CHAMP and GRACE Earth gravity models.Comment: LaTex2e, 6 pages, no figures, no tables. Paper presented at 2nd CHAMP
science meeting, Potsdam, 1-4 September 200
Algebraic characterization of the Wess-Zumino consistency conditions in gauge theories
A new way of solving the descent equations corresponding to the Wess-Zumino
consistency conditions is presented. The method relies on the introduction of
an operator which allows to decompose the exterior space-time
derivative as a commutator. The case of the Yang-Mills theories is
treated in detail.Comment: 16 pages, UGVA-DPT 1992/08-781 to appear in Comm. Math. Phy
Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology
It has been recently suggested by Dvali and Vikman that the superluminal
neutrino phenomenology of the OPERA experiment may be due to an environmental
feature of the Earth, naturally yielding a long-range fifth force of
gravitational origin whose coupling with the neutrino is set by the scale M_*,
in units of reduced Planck mass. Its characteristic length lambda should not be
smaller than one Earth's radius R_e, while its upper bound is expected to be
slightly smaller than the Earth-Moon distance (60 R_e). We analytically work
out some orbital effects of a Yukawa-type fifth force for a test particle
moving in the modified field of a central body. Our results are quite general
since they are not restricted to any particular size of lambda; moreover, they
are valid for an arbitrary orbital configuration of the particle, i.e. for any
value of its eccentricity . We find that the dimensionless strength coupling
parameter alpha is constrained to |alpha| <= 1 10^-10-4 10^-9 for 1 R_e <=
lambda <= 10 R_e by the laser data of the Earth's artificial satellite LAGEOS
II, corresponding to M_* >= 4 10^9 -1.6 10^10. The Moon perigee allows to
obtain |alpha| <= 3 10^-11 for the Earth-Moon pair in the range 15 R_e <=
lambda = 3 10^10 - 4.5 10^10. Our results
are neither necessarily limited to the superluminal OPERA scenario nor to the
Dvali-Vikman model, in which it is M_* = 10^-6 at lambda = 1 R_e, in contrast
with our bounds: they generally extend to any theoretical scenario implying a
fifth-force of Yukawa-type.Comment: LaTex2e, 18 pages, 4 figures, 1 table, 81 reference
Hard Thermal Loops, Static Response and the Composite Effective Action
First, we investigate the static non-Abelian Kubo equation. We prove that it
does not possess finite energy solutions; thereby we establish that gauge
theories do not support hard thermal solitons. A similar argument shows that
"static" instantons are absent. In addition, we note that the static equations
reproduce the expected screening of the non-Abelian electric field by a gauge
invariant Debye mass m=gT sqrt((N+N_F/2)/3). Second, we derive the non-Abelian
Kubo equation from the composite effective action. This is achieved by showing
that the requirement of stationarity of the composite effective action is
equivalent, within a kinematical approximation scheme, to the condition of
gauge invariance for the generating functional of hard thermal loops.Comment: 17 pages, MIT preprint CTP#2261. An Appendix [including one
(appended) PS figure] presenting a numerical analysis of the static solutions
has been included. A note relating our approach to alternative ones has been
added. We have also added references and comments in Section II
Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity
The pericenter shift of a binary system represents a suitable observable to
test for possible deviations from the Newtonian inverse-square law in favor of
new weak interactions between macroscopic objects. We analyzed 13 years of
tracking data of the LAGEOS satellites with GEODYN II software but with no
models for general relativity. From the fit of LAGEOS II pericenter residuals
we have been able to obtain a 99.8% agreement with the predictions of
Einstein's theory. This result may be considered as a 99.8% measurement in the
field of the Earth of the combination of the {\gamma} and {\beta} parameters of
general relativity, and it may be used to constrain possible deviations from
the inverse-square law in favor of new weak interactions parametrized by a
Yukawa-like potential with strength {\alpha} and range {\lambda}. We obtained
|{\alpha}|\lesssim1\times10-11, a huge improvement at a range of about 1 Earth
radius
Finite SU(N)^k Unification
We consider N=1 supersymmetric gauge theories based on the group SU(N)_1 x
SU(N)_2 x ... x SU(N)_k with matter content (N,N*,1,...,1) + (1,N,N*,...,1) +
>... + (N*,1,1,...,N) as candidates for the unification symmetry of all
particles. In particular we examine to which extent such theories can become
finite and we find that a necessary condition is that there should be exactly
three families. We discuss further some phenomenological issues related to the
cases (N,k) = (3,3), (3,4), and (4,3), in an attempt to choose those theories
that can become also realistic. Thus we are naturally led to consider the
SU(3)^3 model which we first promote to an all-loop finite theory and then we
study its additional predictions concerning the top quark mass, Higgs mass and
supersymmetric spectrum.Comment: 15 page
- …