4,684 research outputs found

    Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test

    Full text link
    We deal with the test of the general relativistic gravitomagnetic Lense-Thirring effect currently ongoing in the Earth's gravitational field with the combined nodes \Omega of the laser-ranged geodetic satellites LAGEOS and LAGEOS II. One of the most important source of systematic uncertainty on the orbits of the LAGEOS satellites, with respect to the Lense-Thirring signature, is the bias due to the even zonal harmonic coefficients J_L of the multipolar expansion of the Earth's geopotential which account for the departures from sphericity of the terrestrial gravitational potential induced by the centrifugal effects of its diurnal rotation. The issue addressed here is: are the so far published evaluations of such a systematic error reliable and realistic? The answer is negative. Indeed, if the difference \Delta J_L among the even zonals estimated in different global solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008, AIUB-GRACE01S) is assumed for the uncertainties \delta J_L instead of using their more or less calibrated covariance sigmas \sigma_{J_L}, it turns out that the systematic error \delta\mu in the Lense-Thirring measurement is about 3 to 4 times larger than in the evaluations so far published based on the use of the sigmas of one model at a time separately, amounting up to 37% for the pair EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based models yields bias as large as about 25-30%. The major discrepancies still occur for J_4, J_6 and J_8, which are just the zonals the combined LAGEOS/LAGOES II nodes are most sensitive to.Comment: LaTex, 12 pages, 12 tables, no figures, 64 references. To appear in Central European Journal of Physics (CEJP

    LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection

    Full text link
    In this paper we analyze quantitatively the concept of LAGEOS--type satellites in critical supplementary orbit configuration (CSOC) which has proven capable of yielding various observables for many tests of General Relativity in the terrestrial gravitational field, with particular emphasis on the measurement of the Lense--Thirring effect.Comment: LaTex2e, 20 pages, 7 Tables, 6 Figures. Changes in Introduction, Conclusions, reference added, accepted for publication in Classical and Quantum Gravit

    On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging

    Get PDF
    In this paper we present a rather extensive error budget for the difference of the perigees of a pair of supplementary SLR satellites aimed to the detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to the abstract, Introduction and Conclusions. References updated, typos corrected. Equation corrected. To appear in General Relativity and Gravitatio

    On the trace identity in a model with broken symmetry

    Get PDF
    Considering the simple chiral fermion meson model when the chiral symmetry is explicitly broken, we show the validity of a trace identity -- to all orders of perturbation theory -- playing the role of a Callan-Symanzik equation and which allows us to identify directly the breaking of dilatations with the trace of the energy-momentum tensor. More precisely, by coupling the quantum field theory considered to a classical curved space background, represented by the non-propagating external vielbein field, we can express the conservation of the energy-momentum tensor through the Ward identity which characterizes the invariance of the theory under the diffeomorphisms. Our ``Callan-Symanzik equation'' then is the anomalous Ward identity for the trace of the energy-momentum tensor, the so-called ``trace identity''.Comment: 11 pages, Revtex file, final version to appear in Phys.Rev.

    The impact of the new CHAMP and GRACE Earth gravity models on the measurement of the general relativistic Lense--Thirring effect with the LAGEOS and LAGEOS II satellites

    Full text link
    Among the effects predicted by the General Theory of Relativity for the orbital motion of a test particle, the post-Newtonian gravitomagnetic Lense-Thirring effect is very interesting and, up to now, there is not yet an undisputable experimental direct test of it. To date, the data analysis of the orbits of the existing geodetic LAGEOS and LAGEOS II satellites has yielded a test of the Lense-Thirring effect with a claimed accuracy of 20%-30%. According to some scientists such estimates could be optimistic. Here we wish to discuss the improvements obtainable in this measurement, in terms of reliability of the evaluation of the systematic error and reduction of its magnitude, due to the new CHAMP and GRACE Earth gravity models.Comment: LaTex2e, 6 pages, no figures, no tables. Paper presented at 2nd CHAMP science meeting, Potsdam, 1-4 September 200

    Algebraic characterization of the Wess-Zumino consistency conditions in gauge theories

    Full text link
    A new way of solving the descent equations corresponding to the Wess-Zumino consistency conditions is presented. The method relies on the introduction of an operator δ\delta which allows to decompose the exterior space-time derivative dd as a BRSBRS commutator. The case of the Yang-Mills theories is treated in detail.Comment: 16 pages, UGVA-DPT 1992/08-781 to appear in Comm. Math. Phy

    Constraints from orbital motions around the Earth of the environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology

    Full text link
    It has been recently suggested by Dvali and Vikman that the superluminal neutrino phenomenology of the OPERA experiment may be due to an environmental feature of the Earth, naturally yielding a long-range fifth force of gravitational origin whose coupling with the neutrino is set by the scale M_*, in units of reduced Planck mass. Its characteristic length lambda should not be smaller than one Earth's radius R_e, while its upper bound is expected to be slightly smaller than the Earth-Moon distance (60 R_e). We analytically work out some orbital effects of a Yukawa-type fifth force for a test particle moving in the modified field of a central body. Our results are quite general since they are not restricted to any particular size of lambda; moreover, they are valid for an arbitrary orbital configuration of the particle, i.e. for any value of its eccentricity ee. We find that the dimensionless strength coupling parameter alpha is constrained to |alpha| <= 1 10^-10-4 10^-9 for 1 R_e <= lambda <= 10 R_e by the laser data of the Earth's artificial satellite LAGEOS II, corresponding to M_* >= 4 10^9 -1.6 10^10. The Moon perigee allows to obtain |alpha| <= 3 10^-11 for the Earth-Moon pair in the range 15 R_e <= lambda = 3 10^10 - 4.5 10^10. Our results are neither necessarily limited to the superluminal OPERA scenario nor to the Dvali-Vikman model, in which it is M_* = 10^-6 at lambda = 1 R_e, in contrast with our bounds: they generally extend to any theoretical scenario implying a fifth-force of Yukawa-type.Comment: LaTex2e, 18 pages, 4 figures, 1 table, 81 reference

    Hard Thermal Loops, Static Response and the Composite Effective Action

    Full text link
    First, we investigate the static non-Abelian Kubo equation. We prove that it does not possess finite energy solutions; thereby we establish that gauge theories do not support hard thermal solitons. A similar argument shows that "static" instantons are absent. In addition, we note that the static equations reproduce the expected screening of the non-Abelian electric field by a gauge invariant Debye mass m=gT sqrt((N+N_F/2)/3). Second, we derive the non-Abelian Kubo equation from the composite effective action. This is achieved by showing that the requirement of stationarity of the composite effective action is equivalent, within a kinematical approximation scheme, to the condition of gauge invariance for the generating functional of hard thermal loops.Comment: 17 pages, MIT preprint CTP#2261. An Appendix [including one (appended) PS figure] presenting a numerical analysis of the static solutions has been included. A note relating our approach to alternative ones has been added. We have also added references and comments in Section II

    Accurate Measurement in the Field of the Earth of the General-Relativistic Precession of the LAGEOS II Pericenter and New Constraints on Non-Newtonian Gravity

    Full text link
    The pericenter shift of a binary system represents a suitable observable to test for possible deviations from the Newtonian inverse-square law in favor of new weak interactions between macroscopic objects. We analyzed 13 years of tracking data of the LAGEOS satellites with GEODYN II software but with no models for general relativity. From the fit of LAGEOS II pericenter residuals we have been able to obtain a 99.8% agreement with the predictions of Einstein's theory. This result may be considered as a 99.8% measurement in the field of the Earth of the combination of the {\gamma} and {\beta} parameters of general relativity, and it may be used to constrain possible deviations from the inverse-square law in favor of new weak interactions parametrized by a Yukawa-like potential with strength {\alpha} and range {\lambda}. We obtained |{\alpha}|\lesssim1\times10-11, a huge improvement at a range of about 1 Earth radius

    Finite SU(N)^k Unification

    Full text link
    We consider N=1 supersymmetric gauge theories based on the group SU(N)_1 x SU(N)_2 x ... x SU(N)_k with matter content (N,N*,1,...,1) + (1,N,N*,...,1) + >... + (N*,1,1,...,N) as candidates for the unification symmetry of all particles. In particular we examine to which extent such theories can become finite and we find that a necessary condition is that there should be exactly three families. We discuss further some phenomenological issues related to the cases (N,k) = (3,3), (3,4), and (4,3), in an attempt to choose those theories that can become also realistic. Thus we are naturally led to consider the SU(3)^3 model which we first promote to an all-loop finite theory and then we study its additional predictions concerning the top quark mass, Higgs mass and supersymmetric spectrum.Comment: 15 page
    corecore