322 research outputs found

    Electrical and structural degradation of GaN high electron mobility transistors under high-power and high-temperature Direct Current stress

    Get PDF
    We have stressed AlGaN/GaN HEMTs (High Electron Mobility Transistors) under high-power and high-temperature DC conditions that resulted in various levels of device degradation. Following electrical stress, we conducted a well-established three-step wet etching process to remove passivation, gate and ohmic contacts so that the device surface can be examined by SEM and AFM. We have found prominent pits and trenches that have formed under the gate edge on the drain side of the device. The width and depth of the pits under the gate edge correlate with the degree of drain current degradation. In addition, we also found visible erosion under the full extent of the gate. The depth of the eroded region averaged along the gate width under the gate correlated with channel resistance degradation. Both electrical and structural analysis results indicate that device degradation under high-power DC conditions is of a similar nature as in better understood high-voltage OFF-state conditions. The recognition of a unified degradation mechanism provides impetus to the development of a degradation model with lifetime predictive capabilities for a broad range of operating conditions spanning from OFF-state to ON-state.United States. Office of Naval Research.Design-for-Reliability Initiative for Future Technologies. Multidisciplinary University Research Initiative

    Probing Spin-Charge Separation in Tunnel-Coupled Parallel Quantum Wires

    Full text link
    Interactions in one-dimensional (1D) electron systems are expected to cause a dynamical separation of electronic spin and charge degrees of freedom. A promising system for experimental observation of this non-Fermi-liquid effect consists of two quantum wires coupled via tunneling through an extended uniform barrier. Here we consider the minimal model of an interacting 1D electron system exhibiting spin-charge separation and calculate the differential tunneling conductance as well as the density-density response function. Both quantities exhibit distinct strong features arising from spin-charge separation. Our analysis of these features within the minimal model neglects interactions between electrons of opposite chirality and applies therefore directly to chiral 1D electron systems realized, e.g., at the edge of integer quantum-Hall systems. Physical insight gained from our results is useful for interpreting current experiment in quantum wires as our main conclusions still apply with nonchiral interactions present. In particular, we discuss the effect of charging due to applied voltages, and the possibility to observe spin-charge separation in a time-resolved experiment.Comment: 9 pages, 3 figures, expanded version with many detail

    Parameter identification problems in the modelling of cell motility

    Get PDF
    We present a novel parameter identification algorithm for the estimation of parameters in models of cell motility using imaging data of migrating cells. Two alternative formulations of the objective functional that measures the difference between the computed and observed data are proposed and the parameter identification problem is formulated as a minimisation problem of nonlinear least squares type. A Levenberg–Marquardt based optimisation method is applied to the solution of the minimisation problem and the details of the implementation are discussed. A number of numerical experiments are presented which illustrate the robustness of the algorithm to parameter identification in the presence of large deformations and noisy data and parameter identification in three dimensional models of cell motility. An application to experimental data is also presented in which we seek to identify parameters in a model for the monopolar growth of fission yeast cells using experimental imaging data. Our numerical tests allow us to compare the method with the two different formulations of the objective functional and we conclude that the results with both objective functionals seem to agree

    Heteroepitaxy of La2O3La_2O_3 and La2xYxO3La_{2-x}Y_xO_3 on GaAs (111)A by Atomic Layer Deposition: Achieving Low Interface Trap Density

    Get PDF
    GaAs metal–oxide–semiconductor devices historically suffer from Fermi-level pinning, which is mainly due to the high trap density of states at the oxide/GaAs interface. In this work, we present a new way of passivating the interface trap states by growing an epitaxial layer of high-k dielectric oxide, La2xYxO3La_{2–x}Y_xO_3, on GaAs(111)A. High-quality epitaxial La2xYxO3La_{2–x}Y_xO_3 thin films are achieved by an ex situ atomic layer deposition (ALD) process, and GaAs MOS capacitors made from this epitaxial structure show very good interface quality with small frequency dispersion and low interface trap densities (Dit)(D_{it}). In particular, the La2O3La_2O_3/GaAs interface, which has a lattice mismatch of only 0.04%, shows very low DitD_{it} in the GaAs bandgap, below 3×1011cm2eV13 × 10^{11} cm^{–2} eV^{–1} near the conduction band edge. The La2O3La_2O_3/GaAs capacitors also show the lowest frequency dispersion of any dielectric on GaAs. This is the first achievement of such low trap densities for oxides on GaAs.Chemistry and Chemical Biolog

    Testing Bell's inequality using ballistic electrons in semiconductors

    Get PDF
    We propose an experiment to test Bell's inequality violation in condensed-matter physics. We show how to generate, manipulate, and detect entangled states using ballistic electrons in Coulomb-coupled semiconductor quantum wires. Due to its simplicity (only five gates are required to prepare entangled states and to test Bell's inequality), the proposed semiconductor-based scheme can be implemented with currently available technology. Moreover, its basic ingredients may play a role towards large-scale quantum-information processing in solid-state devices

    Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions

    Get PDF
    The interactions between biochemical processes and mechanical signaling play important roles during various cellular processes such as wound healing, embryogenesis, metastasis, and cell migration. While traditional traction force measurements have provided quantitative information about cell matrix interactions in two dimensions, recent studies have shown significant differences in the behavior and morphology of cells when placed in three-dimensional environments. Hence new quantitative experimental techniques are needed to accurately determine cell traction forces in three dimensions. Recently, two approaches both based on laser scanning confocal microscopy have emerged to address this need. This study highlights the details, implementation and advantages of such a three-dimensional imaging methodology with the capability to compute cellular traction forces dynamically during cell migration and locomotion. An application of this newly developed three-dimensional traction force microscopy (3D TFM) technique to single cell migration studies of 3T3 fibroblasts is presented to show that this methodology offers a new quantitative vantage point to investigate the three-dimensional nature of cell-ECM interactions

    An Oscillatory Contractile Pole-Force Component Dominates the Traction Forces Exerted by Migrating Amoeboid Cells

    Get PDF
    We used principal component analysis to dissect the mechanics of chemotaxis of amoeboid cells into a reduced set of dominant components of cellular traction forces and shape changes. The dominant traction force component in wild-type cells accounted for ~40% of the mechanical work performed by these cells, and consisted of the cell attaching at front and back contracting the substrate towards its centroid (pole-force). The time evolution of this pole-force component was responsible for the periodic variations of cell length and strain energy that the cells underwent during migration. We identified four additional canonical components, reproducible from cell to cell, overall accounting for an additional ~20% of mechanical work, and associated with events such as lateral protrusion of pseudopodia. We analyzed mutant strains with contractility defects to quantify the role that non-muscle Myosin II (MyoII) plays in amoeboid motility. In MyoII essential light chain null cells the polar-force component remained dominant. On the other hand, MyoII heavy chain null cells exhibited a different dominant traction force component, with a marked increase in lateral contractile forces, suggesting that cortical contractility and/or enhanced lateral adhesions are important for motility in this cell line. By compressing the mechanics of chemotaxing cells into a reduced set of temporally-resolved degrees of freedom, the present study may contribute to refined models of cell migration that incorporate cell-substrate interactions

    A preliminary study on the induction of dioestrous ovulation in the mare – a possible method for inducing prolonged luteal phase

    Get PDF
    BACKGROUND: Strong oestrous symptoms in the mare can cause problems with racing, training and handling. Since long-acting progesterone treatment is not permitted in mares at competition (e.g. according to FEI rules), there is a need for methods to suppress unwanted cyclicity. Spontaneous dioestrous ovulations in the late luteal phase may cause a prolongation of the luteal phase in mares. METHODS: In this preliminary study, in an attempt to induce ovulation during the luteal phase, human chorionic gonadotropin (hCG) (3000 IU) was injected intramuscularly in four mares (experimental group) in the luteal phase when a dioestrous follicle ≥ 30 mm was detected. A fifth mare included in this group was not treated due to no detectable dioestrous follicles ≥ 30 mm. Four control mares were similarly injected with saline. The mares were followed with ultrasound for 72 hours post injection or until ovulation. Blood samples for progesterone analysis were obtained twice weekly for one month and thereafter once weekly for another two to four months. RESULTS: Three of the hCG-treated mares ovulated within 72 hours after treatment and developed prolonged luteal phases of 58, 68 and 82 days respectively. One treated mare never ovulated after the hCG injection and progesterone levels fell below 3 nmol/l nine days post treatment. Progesterone levels in the control mares were below 3 nmol/l within nine days after saline injection, except for one mare, which developed a spontaneously prolonged luteal phase of 72 days. CONCLUSION: HCG treatment may be a method to induce prolonged luteal phases in the mare provided there is a dioestrous follicle ≥ 30 mm that ovulates post-treatment. However, the method needs to be tested on a larger number of mares to be able to draw conclusions regarding its effectiveness
    corecore