8 research outputs found

    Climate change and pest risk in temperate eucalypt and radiata pine plantations: a review

    No full text
    <p>Climatic changes are likely to alter the distribution and abundance of insect and fungal pests of Australia’s plantations, and consequently the frequency and severity of outbreaks and damage to the host. Using review and synthesis of published literature, we examined these risks in temperate eucalypt and radiata pine plantations in Australia from the perspectives of individual pest and host responses to climate change and the response of the host-pest system to climate. The pests vary in their patterns of damage caused, host tissues affected, season of damage and the stage of stand development targeted. Twenty-one major pests were identified, the majority of which (71%) are defoliators and pests of eucalypt plantations rather than radiata pine plantations. Documented distributions of these pests are presented. The possible consequences of climate change for pest risk are examined in relation to effects on (1) pest lifecycles, (2) pest distribution, (3) frequency and severity of outbreaks, and (4) host susceptibility to damage. An integrated approach for managing pest risk under future climates, that combines these four elements, is desirable. Use of models is necessary to examine species distribution and abundance, and to integrate damage levels with impact on the host. Field monitoring should play an important role, providing data for model validation and to provide a critical link between data on pest species distribution, abundance and damage on the ground. The synthesis is supported with detailed supplementary material for each pest species.</p

    Adherence to Point-of-Use Water Treatment over Short-Term Implementation: Parallel Crossover Trials of Flocculation–Disinfection Sachets in Pakistan and Zambia

    No full text
    The health benefits of point-of-use (POU) water treatment can only be realized through high adherence: correct, consistent, and sustained use. We conducted parallel randomized, longitudinal crossover trials measuring short-term adherence to two single-use flocculant–disinfectant sachets in Pakistan and Zambia. In both trials, adherence declined sharply for both products over the eight week surveillance periods, with overall lower adherence to both products in Zambia. There was no significant difference in adherence between the two products. Estimated median daily production of treated water dropped over the crossover period from 2.5 to 1.4 L person<sup>–1</sup> day<sup>–1</sup> (46% decline) in Pakistan and from 1.4 to 1.1 L person<sup>–1</sup> day<sup>–1</sup> (21% decline) in Zambia. The percentage of surveillance points with detectable total chlorine in household drinking water declined from 70% to 49% in Pakistan and rose marginally from 28% to 30% in Zambia. The relatively low and decreasing adherence observed in this study suggests that these products would have provided little protection from waterborne disease risk in these settings. Our findings underscore the challenge of achieving high adherence to POU water treatment, even under conditions of short-term adoption with intensive follow-up

    Table S5. Annotation of reported PIR crosslinks. Search engine output: react2 data files for each crosslink are listed in the two rightmost columns. React2 files and the corresponding mzXML files have been uploaded to ProteomeXchange as part of this publication. from Protein interaction networks at the host–microbe interface in <i>Diaphorina citri</i>, the insect vector of the citrus greening pathogen

    No full text
    The Asian citrus psyllid (<i>Diaphorina citri)</i> is the insect vector responsible for the worldwide spread of ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that <i>D. citri</i> transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the <i>D. citri</i> immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a <i>D. citri</i> haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a <i>D. citri</i> myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with <i>D. citri</i> proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening

    Table S1. Spectral count data for differentially expressed proteins identified between CLas(+)/(-) adult ACP. Average spectral count calculated from three biological replicates analyzed from each sample category. Statistical analysis using Fisher's exact test (p-value<0.05 with Hochberg-Benjamini multiple testing correction) was used to determine significance of spectral count differences between categories

    No full text
    The Asian citrus psyllid (<i>Diaphorina citri)</i> is the insect vector responsible for the worldwide spread of ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that <i>D. citri</i> transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the <i>D. citri</i> immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a <i>D. citri</i> haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a <i>D. citri</i> myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with <i>D. citri</i> proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening

    File S1. Supplemental methods: Protein Interaction Reporter (PIR) crosslinking from Protein interaction networks at the host–microbe interface in <i>Diaphorina citri</i>, the insect vector of the citrus greening pathogen

    No full text
    The Asian citrus psyllid (<i>Diaphorina citri)</i> is the insect vector responsible for the worldwide spread of ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that <i>D. citri</i> transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the <i>D. citri</i> immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a <i>D. citri</i> haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a <i>D. citri</i> myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with <i>D. citri</i> proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening

    Table S3. Spectral count data for differentially expressed proteins identified between Adult and Nymph CLas(+) ACP. Average spectral count calculated from three biological replicates analyzed from each sample category. Statistical analysis using Fisher's exact test (p-value<0.05 with Hochberg-Benjamini multiple testing correction) was used to determine significance of spectral count differences between categories

    No full text
    The Asian citrus psyllid (<i>Diaphorina citri)</i> is the insect vector responsible for the worldwide spread of ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that <i>D. citri</i> transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the <i>D. citri</i> immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a <i>D. citri</i> haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a <i>D. citri</i> myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with <i>D. citri</i> proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening

    Table S4. Spectral count data for differentially expressed proteins identified between Adult and Nymph CLas(-) ACP. Average spectral count calculated from three biological replicates analyzed from each sample category. Statistical analysis using Fisher's exact test (p-value<0.05 with Hochberg-Benjamini multiple testing correction) was used to determine significance of spectral count differences between categories

    No full text
    The Asian citrus psyllid (<i>Diaphorina citri)</i> is the insect vector responsible for the worldwide spread of ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that <i>D. citri</i> transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the <i>D. citri</i> immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a <i>D. citri</i> haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a <i>D. citri</i> myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with <i>D. citri</i> proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening

    Table S2. Spectral count data for differentially expressed proteins identified between CLas(+)/(-) nymph ACP. Average spectral count calculated from three biological replicates analyzed from each sample category. Statistical analysis using Fisher's exact test (p-value<0.05 with Hochberg-Benjamini multiple testing correction) was used to determine significance of spectral count differences between categories

    No full text
    The Asian citrus psyllid (<i>Diaphorina citri)</i> is the insect vector responsible for the worldwide spread of ‘<i>Candidatus</i> Liberibacter asiaticus’ (CLas), the bacterial pathogen associated with citrus greening disease. Developmental changes in the insect vector impact pathogen transmission, such that <i>D. citri</i> transmission of CLas is more efficient when bacteria are acquired by nymphs when compared with adults. We hypothesize that expression changes in the <i>D. citri</i> immune system and commensal microbiota occur during development and regulate vector competency. In support of this hypothesis, more proteins, with greater fold changes, were differentially expressed in response to CLas in adults when compared with nymphs, including insect proteins involved in bacterial adhesion and immunity. Compared with nymphs, adult insects had a higher titre of CLas and the bacterial endosymbionts Wolbachia, Profftella and Carsonella. All Wolbachia and Profftella proteins differentially expressed between nymphs and adults are upregulated in adults, while most differentially expressed Carsonella proteins are upregulated in nymphs. Discovery of protein interaction networks has broad applicability to the study of host–microbe relationships. Using protein interaction reporter technology, a <i>D. citri</i> haemocyanin protein highly upregulated in response to CLas was found to physically interact with the CLas coenzyme A (CoA) biosynthesis enzyme phosphopantothenoylcysteine synthetase/decarboxylase. CLas pantothenate kinase, which catalyses the rate-limiting step of CoA biosynthesis, was found to interact with a <i>D. citri</i> myosin protein. Two Carsonella enzymes involved in histidine and tryptophan biosynthesis were found to physically interact with <i>D. citri</i> proteins. These co-evolved protein interaction networks at the host–microbe interface are highly specific targets for controlling the insect vector responsible for the spread of citrus greening
    corecore