669 research outputs found
Positive recurrence of reflecting Brownian motion in three dimensions
Consider a semimartingale reflecting Brownian motion (SRBM) whose state
space is the -dimensional nonnegative orthant. The data for such a process
are a drift vector , a nonsingular covariance matrix
, and a reflection matrix that specifies the boundary
behavior of . We say that is positive recurrent, or stable, if the
expected time to hit an arbitrary open neighborhood of the origin is finite for
every starting state. In dimension , necessary and sufficient conditions
for stability are known, but fundamentally new phenomena arise in higher
dimensions. Building on prior work by El Kharroubi, Ben Tahar and Yaacoubi
[Stochastics Stochastics Rep. 68 (2000) 229--253, Math. Methods Oper. Res. 56
(2002) 243--258], we provide necessary and sufficient conditions for stability
of SRBMs in three dimensions; to verify or refute these conditions is a simple
computational task. As a byproduct, we find that the fluid-based criterion of
Dupuis and Williams [Ann. Probab. 22 (1994) 680--702] is not only sufficient
but also necessary for stability of SRBMs in three dimensions. That is, an SRBM
in three dimensions is positive recurrent if and only if every path of the
associated fluid model is attracted to the origin. The problem of recurrence
classification for SRBMs in four and higher dimensions remains open.Comment: Published in at http://dx.doi.org/10.1214/09-AAP631 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Contest based on a directed polymer in a random medium
We introduce a simple one-parameter game derived from a model describing the
properties of a directed polymer in a random medium. At his turn, each of the
two players picks a move among two alternatives in order to maximize his final
score, and minimize opponent's return. For a game of length , we find that
the probability distribution of the final score develops a traveling wave
form, , with the wave profile unusually
decaying as a double exponential for large positive and negative . In
addition, as the only parameter in the game is varied, we find a transition
where one player is able to get his maximum theoretical score. By extending
this model, we suggest that the front velocity is selected by the nonlinear
marginal stability mechanism arising in some traveling wave problems for which
the profile decays exponentially, and for which standard traveling wave theory
applies
Model of Cluster Growth and Phase Separation: Exact Results in One Dimension
We present exact results for a lattice model of cluster growth in 1D. The
growth mechanism involves interface hopping and pairwise annihilation
supplemented by spontaneous creation of the stable-phase, +1, regions by
overturning the unstable-phase, -1, spins with probability p. For cluster
coarsening at phase coexistence, p=0, the conventional structure-factor scaling
applies. In this limit our model falls in the class of diffusion-limited
reactions A+A->inert. The +1 cluster size grows diffusively, ~t**(1/2), and the
two-point correlation function obeys scaling. However, for p>0, i.e., for the
dynamics of formation of stable phase from unstable phase, we find that
structure-factor scaling breaks down; the length scale associated with the size
of the growing +1 clusters reflects only the short-distance properties of the
two-point correlations.Comment: 12 page
Symmetry and species segregation in diffusion-limited pair annihilation
We consider a system of q diffusing particle species A_1,A_2,...,A_q that are
all equivalent under a symmetry operation. Pairs of particles may annihilate
according to A_i + A_j -> 0 with reaction rates k_{ij} that respect the
symmetry, and without self-annihilation (k_{ii} = 0). In spatial dimensions d >
2 mean-field theory predicts that the total particle density decays as n(t) ~
1/t, provided the system remains spatially uniform. We determine the conditions
on the matrix k under which there exists a critical segregation dimension
d_{seg} below which this uniformity condition is violated; the symmetry between
the species is then locally broken. We argue that in those cases the density
decay slows down to n(t) ~ t^{-d/d_{seg}} for 2 < d < d_{seg}. We show that
when d_{seg} exists, its value can be expressed in terms of the ratio of the
smallest to the largest eigenvalue of k. The existence of a conservation law
(as in the special two-species annihilation A + B -> 0), although sufficient
for segregation, is shown not to be a necessary condition for this phenomenon
to occur. We work out specific examples and present Monte Carlo simulations
compatible with our analytical results.Comment: latex, 19 pages, 3 eps figures include
Exact Results for a Three-Body Reaction-Diffusion System
A system of particles hopping on a line, singly or as merged pairs, and
annihilating in groups of three on encounters, is solved exactly for certain
symmetrical initial conditions. The functional form of the density is nearly
identical to that found in two-body annihilation, and both systems show
non-mean-field, ~1/t**(1/2) instead of ~1/t, decrease of particle density for
large times.Comment: 10 page
Exact asymptotics of the freezing transition of a logarithmically correlated random energy model
We consider a logarithmically correlated random energy model, namely a model
for directed polymers on a Cayley tree, which was introduced by Derrida and
Spohn. We prove asymptotic properties of a generating function of the partition
function of the model by studying a discrete time analogy of the KPP-equation -
thus translating Bramson's work on the KPP-equation into a discrete time case.
We also discuss connections to extreme value statistics of a branching random
walk and a rescaled multiplicative cascade measure beyond the critical point
Particle Dynamics in a Mass-Conserving Coalescence Process
We consider a fully asymmetric one-dimensional model with mass-conserving
coalescence. Particles of unit mass enter at one edge of the chain and
coalescence while performing a biased random walk towards the other edge where
they exit. The conserved particle mass acts as a passive scalar in the reaction
process , and allows an exact mapping to a restricted ballistic
surface deposition model for which exact results exist. In particular, the
mass- mass correlation function is exactly known. These results complement
earlier exact results for the process without mass. We introduce a
comprehensive scaling theory for this process. The exact anaytical and
numerical results confirm its validity.Comment: 5 pages, 6 figure
Growth Kinetics in Systems with Local Symmetry
The phase transition kinetics of Ising gauge models are investigated. Despite
the absence of a local order parameter, relevant topological excitations that
control the ordering kinetics can be identified. Dynamical scaling holds in the
approach to equilibrium, and the growth of typical length scale is
characteristic of a new universality class with . We suggest that the asymptotic kinetics of the 2D Ising gauge
model is dual to that of the 2D annihilating random walks, a process also known
as the diffusion-reaction .Comment: 10 pages in Tex, 2 Postscript figures appended, NSF-ITP-93-4
- …