2,182 research outputs found
Influence of dimensionality on superconductivity in carbon nanotubes
We investigate the electronic instabilities in carbon nanotubes (CNs),
looking for the break-down of the one dimensional Luttinger liquid regime due
to the strong screening of the long-range part of the Coulomb repulsion. We
show that such a breakdown is realized both in ultra-small single wall CNs and
multi wall CNs, while a purely electronic mechanism could explain the
superconductivity (SC) observed recently in ultra-small (diameter ) single wall CNs () and entirely end-bonded multi-walled
ones (). We show that both the doping and the screening of
long-range part of the electron-electron repulsion, needed to allow the SC
phase, are related to the intrinsically 3D nature of the environment where the
CNs operate.Comment: 5 pages, 3 figures, PACS: 71.10.Pm,74.50.+r,71.20.Tx, to appear in J.
Phys. Cond. Ma
Effective gravity and OSp(N,4) invariant matter
We re-examine the OSp(N,4) invariant interacting model of massless chiral and
gauge superfields, whose superconformal invariance was instrumental, both in
proving the all-order no-renormalization of the mass and chiral
self-interaction lagrangians, and in determining the linear superfield
renormalization needed. We show that the renormalization of the gravitational
action modifies only the cosmological term, without affecting higher-order
tensors. This could explain why the effect of the cosmological constant is
shadowed by the effects of newtonian gravity.Comment: 12 pages, LaTeX, 4 figures, PACS: 04.65.+e, substantial revisions, to
appear in Phys. Rev.
Crossover from marginal Fermi liquid to Luttinger liquid behavior in carbon nanotubes
We study graphene-based electron systems with long-range Coulomb interaction
by performing an analytic continuation in the number of dimensions. We
characterize in this way the crossover between the marginal Fermi liquid
behavior of a graphite layer and the Luttinger liquid behavior at . The
former persists for any dimension above . However, the proximity to the
fixed-point strongly influences the phenomenology of
quasi-onedimensional systems, giving rise to an effective power-law behavior of
observables like the density of states. This applies to nanotubes of large
radius, for which we predict a lower bound of the corresponding exponent that
turns out to be very close to the value measured in multi-walled nanotubes.Comment: 4 pages, 4 postscript figure
On the Coulomb interaction in chiral-invariant one-dimensional electron systems
We consider a one-dimensional electron system, suitable for the description
of the electronic correlations in a metallic carbon nanotube. Renormalization
group methods are used to study the low-energy behavior of the unscreened
Coulomb interaction between currents of well-defined chirality. In the limit of
a very large number n of subbands we find a strong renormalization of the Fermi
velocity, reminiscent of a similar phenomenon in the graphite sheet. For small
n or sufficiently low energy, the Luttinger liquid behavior takes over, with a
strong wavefunction renormalization leading to a vanishing quasiparticle
weight. Our approach is appropriate to study the crossover from two-dimensional
to one-dimensional behavior in carbon nanotubes of large radius.Comment: 8 pages, 2 figures, LaTeX, PACS: 71.27.+a, 73.20.D, 05.30.F
N=8 supersymmetric mechanics on the sphere S^3
Starting from quaternionic N=8 supersymmetric mechanics we perform a
reduction over a bosonic radial variable, ending up with a nonlinear off-shell
supermultiplet with three bosonic end eight fermionic physical degrees of
freedom. The geometry of the bosonic sector of the most general sigma-model
type action is described by an arbitrary function obeying the three dimensional
Laplace equation on the sphere S^3. Among the bosonic components of this new
supermultiplet there is a constant which gives rise to potential terms. After
dualization of this constant one may come back to the supermultiplet with four
physical bosons. However, this new supermultiplet is highly nonlinear. The
geometry of the corresponding sigma-model action is briefly discussed.Comment: 9 pages, LaTeX file, PACS: 11.30.Pb, 03.65.-
Crossover from Luttinger liquid to Coulomb blockade regime in carbon nanotubes
We develop a theoretical approach to the low-energy properties of 1D electron
systems aimed to encompass the mixed features of Luttinger liquid and Coulomb
blockade behavior observed in the crossover between the two regimes. For this
aim we extend the Luttinger liquid description by incorporating the effects of
a discrete single-particle spectrum. The intermediate regime is characterized
by a power-law behavior of the conductance, but with an exponent oscillating
with the gate voltage, in agreement with recent experimental observations. Our
construction also accounts naturally for the existence of a crossover in the
zero-bias conductance, mediating between two temperature ranges where the
power-law behavior is preserved but with different exponent.Comment: 5 pages, 3 figure
The geometry of N=4 twisted string
We compare N=2 string and N=4 topological string within the framework of the
sigma model approach. Being classically equivalent on a flat background, the
theories are shown to lead to different geometries when put in a curved space.
In contrast to the well studied Kaehler geometry characterising the former
case, in the latter case a manifold has to admit a covariantly constant
holomorphic two-form in order to support an N=4 twisted supersymmetry. This
restricts the holonomy group to be a subgroup of SU(1,1) and leads to a
Ricci--flat manifold. We speculate that, the N=4 topological formalism is an
appropriate framework to smooth down ultraviolet divergences intrinsic to the
N=2 theory.Comment: 20 pages, LaTe
Large N Effects and Renormalization of the Long-Range Coulomb Interaction in Carbon Nanotubes
We develop a dimensional regularization approach to deal with the low-energy
effects of the long-range Coulomb interaction in 1D electron systems. The
method allows us to avoid the infrared singularities arising from the
long-range Coulomb interaction at D = 1, providing at the same time insight
about the fixed-points of the theory. We show that the effect of increasing the
number N of subbands at the Fermi level is opposite to that of approaching the
bare Coulomb interaction in the limit D --> 1. Then, we devise a double scaling
limit, in which the large N effects are able to tame the singularities due to
the long-range interaction. Thus, regular expressions can be obtained for all
observables right at D = 1, bearing also a dependence o the doping level of the
system. Our results imply a variation with N in the value of the exponent for
the tunneling density of states, which is in fair agreement with that observed
in different transport experiments involving carbon nanotubes. As the doping
level is increased in nanotubes of large radius and multi-walled nanotubes, we
predict a significant reduction of order N^{-1/2} in the critical exponent of
the tunneling density of states.Comment: 16 pages, 5 figures, PACS codes: 73.40, 11.10.
Making the hyper--K\"ahler structure of N=2 quantum string manifest
We show that the Lorentz covariant formulation of N=2 string in a curved
space reveals an explicit hyper--K\"ahler structure. Apart from the metric, the
superconformal currents couple to a background two--form. By superconformal
symmetry the latter is constrained to be holomorphic and covariantly constant
and allows one to construct three complex structures obeying a
(pseudo)quaternion algebra.Comment: 8 pages, no figures, PACS: 04.60.Ds; 11.30.Pb, Keywords: N=2 string,
hyper-K\"ahler geometry. Presentation improved, references added. The version
to appear in PR
Suppression of electron-electron repulsion and superconductivity in Ultra Small Carbon Nanotubes
Recently, ultra-small-diameter Single Wall Nano Tubes with diameter of have been produced and many unusual properties were observed, such as
superconductivity, leading to a transition temperature , much
larger than that observed in the bundles of larger diameter tubes.
By a comparison between two different approaches, we discuss the issue
whether a superconducting behavior in these carbon nanotubes can arise by a
purely electronic mechanism. The first approach is based on the Luttinger Model
while the second one, which emphasizes the role of the lattice and short range
interaction, is developed starting from the Hubbard Hamiltonian. By using the
latter model we predict a transition temperature of the same order of magnitude
as the measured one.Comment: 7 pages, 3 figures, to appear in J. Phys.-Cond. Ma
- …