460 research outputs found

    Ward identities for the Anderson impurity model: derivation via functional methods and the exact renormalization group

    Full text link
    Using functional methods and the exact renormalization group we derive Ward identities for the Anderson impurity model. In particular, we present a non-perturbative proof of the Yamada-Yosida identities relating certain coefficients in the low-energy expansion of the self-energy to thermodynamic particle number and spin susceptibilities of the impurity. Our proof underlines the relation of the Yamada-Yosida identities to the U(1) x U(1) symmetry associated with particle number and spin conservation in a magnetic field.Comment: 8 pages, corrected statements about infintite flatband limi

    Classical Phase Fluctuations in Incommensurate Peierls Chains

    Full text link
    In the pseudogap regime of one-dimensional incommensurate Peierls systems, fluctuations of the phase of the order parameter prohibit the emergence of long-range order and generate a finite correlation length. For classical phase fluctuations, we present exact results for the average electronic density of states, the mean localization length, the electronic specific heat and the spin susceptibility at low temperatures. Our results for the susceptibility give a good fit to experimental data.Comment: 4 Revtex pages, 4 figures, submitted to Phys. Rev. Let

    Absence of fermionic quasi-particles in the superfluid state of the attractive Fermi gas

    Full text link
    We calculate the effect of order parameter fluctuations on the fermionic single-particle excitations in the superfluid state of neutral fermions interacting with short range attractive forces. We show that in dimensions D \leq 3 the singular effective interaction between the fermions mediated by the gapless Bogoliubov-Anderson mode prohibits the existence of well-defined quasi-particles. We explicitly calculate the single-particle spectral function in the BEC regime in D=3 and show that in this case the quasi-particle residue and the density of states are logarithmically suppressed.Comment: 4 RevTex pages, 3 figures; title changed, new Figure 1, added references. We argue that in the entire regime of the BCS-BEC crossover the quasi-particle picture breaks down in D <=3 for neutral fermions (but NOT for charged fermions

    Renormalization of the BCS-BEC crossover by order parameter fluctuations

    Full text link
    We use the functional renormalization group approach with partial bosonization in the particle-particle channel to study the effect of order parameter fluctuations on the BCS-BEC crossover of superfluid fermions in three dimensions. Our approach is based on a new truncation of the vertex expansion where the renormalization group flow of bosonic two-point functions is closed by means of Dyson-Schwinger equations and the superfluid order parameter is related to the single particle gap via a Ward identity. We explicitly calculate the chemical potential, the single-particle gap, and the superfluid order parameter at the unitary point and compare our results with experiments and previous calculations.Comment: 5 pages, 3 figure

    Spectral function of the Anderson impurity model at finite temperatures

    Full text link
    Using the functional renormalization group (FRG) and the numerical renormalization group (NRG), we calculate the spectral function of the Anderson impurity model at zero and finite temperatures. In our FRG scheme spin fluctuations are treated non-perturbatively via a suitable Hubbard-Stratonovich field, but vertex corrections are neglected. A comparison with our highly accurate NRG results shows that this FRG scheme gives a quantitatively good description of the spectral line-shape at zero and finite temperatures both in the weak and strong coupling regimes, although at zero temperature the FRG is not able to reproduce the known exponential narrowing of the Kondo resonance at strong coupling.Comment: 6 pages, 3 figures; new references adde

    Ferromagnetic Luttinger Liquids

    Full text link
    We study weak itinerant ferromagnetism in one-dimensional Fermi systems using perturbation theory and bosonization. We find that longitudinal spin fluctuations propagate ballistically with velocity v_m << v_F, where v_F is the Fermi velocity. This leads to a large anomalous dimension in the spin-channel and strong algebraic singularities in the single-particle spectral function and in the transverse structure factor for momentum transfers q ~ 2 Delta/v_F, where 2 Delta is the exchange splitting.Comment: 4 pages, 3 figure

    Exact Numerical Calculation of the Density of States of the Fluctuating Gap Model

    Full text link
    We develop a powerful numerical algorithm for calculating the density of states rho(omega) of the fluctuating gap model, which describes the low-energy physics of disordered Peierls and spin-Peierls chains. We obtain rho(omega) with unprecedented accuracy from the solution of a simple initial value problem for a single Riccati equation. Generating Gaussian disorder with large correlation length xi by means of a simple Markov process, we present a quantitative study of the behavior of rho (omega) in the pseudogap regime. In particular, we show that in the commensurate case and in the absence of forward scattering the pseudogap is overshadowed by a Dyson singularity below a certain energy scale omega^{ast}, which we explicitly calculate as a function of xi.Comment: 4 revtex pages, 3 figure

    Porcine endogenous retroviruses PERV A and A/C recombinant are insensitive to a range of divergent mammalian TRIM5  proteins including human TRIM5

    Get PDF
    The potential risk of cross-species transmission of porcine endogenous retroviruses (PERV) to humans has slowed the development of xenotransplantation, using pigs as organ donors. Here, we show that PERVs are insensitive to restriction by divergent TRIM5{alpha} molecules despite the fact that they strongly restrict a variety of divergent lentiviruses. We also show that the human PERV A/C recombinant clone 14/220 reverse transcribes with increased efficiency in human cells, leading to significantly higher infectivity. We conclude that xenotransplantation studies should consider the danger of highly infectious TRIM5{alpha}-insensitive human-tropic PERV recombinants

    Algorithm for obtaining the gradient expansion of the local density of states and the free energy of a superconductor

    Full text link
    We present an efficient algorithm for obtaining the gauge-invariant gradient expansion of the local density of states and the free energy of a clean superconductor. Our method is based on a new mapping of the semiclassical linearized Gorkov equations onto a pseudo-Schroedinger equation for a three-component wave-function psi(x), where one component is directly related to the local density of states. Because psi(x) satisfies a linear equation of motion, successive terms in the gradient expansion can be obtained by simple linear iteration. Our method works equally well for real and complex order parameter, and in the presence of arbitrary external fields. We confirm a recent calculation of the fourth order correction to the free energy by Kosztin, Kos, Stone and Leggett [Phys. Rev. B 58, 9365 (1998)], who obtained a discrepancy with an earlier result by Tewordt [Z. Phys. 180, 385 (1964)]. We also give the fourth order correction to the local density of states, which has not been published before.Comment: 12 preprint pages, added remark concerning Eilenberger equation, accepted for publication in Phys. Rev.

    Exact Results for the Crossover from Gaussian to Non-Gaussian Order Parameter Fluctuations in Quasi One-Dimensional Electronic Systems

    Full text link
    The physics of quasi one-dimensional Peierls systems is dominated by order parameter fluctuations. We present an algorithm which allows for the first time to exactly calculate physical properties of the electrons gas coupled to classical order parameter fluctuations. The whole range from the Gaussian regime dominated by amplitude fluctuations to the non-Gaussian regime dominated by phase fluctuations is accessible. Our results provide insight into the 'pseudogap' phenomenon occurring in underdoped high-temperature superconductors, quasi one-dimensional organic conductors and liquid metals.Comment: 4 pages, 4 figures, accepted for publication in Physical Review Letter
    • …
    corecore