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Porcine endogenous retroviruses PERV A and A/C
recombinant are insensitive to a range of divergent
mammalian TRIMS5« proteins including human
TRIM5x
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The potential risk of cross-species transmission of porcine endogenous retroviruses (PERV) to

humans has slowed the development of xenotransplantation, using pigs as organ donors. Here,
we show that PERVs are insensitive to restriction by divergent TRIM5a molecules despite the fact
that they strongly restrict a variety of divergent lentiviruses. We also show that the human PERV

A/C recombinant clone 14/220 reverse transcribes with increased efficiency in human cells,
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leading to significantly higher infectivity. We conclude that xenotransplantation studies should
consider the danger of highly infectious TRIM5a-insensitive human-tropic PERV recombinants.

INTRODUCTION

Pig to human xenotransplantation has been proposed as a
way to alleviate the shortage of human donor organs used
to treat a wide range of important medical conditions.
However, it has been suggested that this process might lead
to zoonosis of pathogens from the porcine organ to the
human host, particularly after immunosuppression (Stoye
& Coffin, 1995; Stoye et al., 1998). Indeed, expression of
porcine endogenous retroviruses (PERV) has been demon-
strated in pigs and their presence in the germ line will make
them difficult, if not impossible, to eliminate (Le Tissier
et al., 1997; Patience et al, 2001). The notion that
gammaretroviruses can be zoonotic is supported by the
presence of highly related gammaretroviruses in unrelated
species such as gibbons (gibbon ape leukemia virus) and
koalas (koala retrovirus) (Hanger et al, 2000; Tarlinton
et al., 2006). Their high degree of relatedness is interpreted
as demonstrating zoonosis to gibbons and koalas, possibly
from mice (Lieber et al., 1975). Importantly, these viruses
are pathogenic, causing leukaemia in both gibbons and
koalas. As PERV sequences are closely related to these
viruses, it is reasonable to suppose that in the right
circumstances they too would be zoonotic, and potentially
pathogenic if transmitted to humans.

TRIM5a has recently emerged as an important mediator of
antiretroviral innate immunity in mammals. TRIM5«
blocks retroviral infection in a species-specific way, for
example human immunodeficiency virus type 1 (HIV-1) is

restricted by TRIM5¢ from Old World monkeys, but not
by human TRIM5a (Hatziioannou et al., 2004; Stremlau et
al., 2004; Yap et al, 2004). Human TRIMb5a restricts
infection by equine infectious anemia virus (EIAV) and the
murine leukemia virus (MLV-N) (Hatziioannou et al.,
2004; Keckesova et al., 2004; Yap et al., 2004). TRIM5«
encodes RING, B-box and coiled-coil domains, comprising
a tripartite motif, as well as a C-terminal B30.2 domain,
which determines antiviral specificity, and appears to
interact directly with the incoming viral capsid (Stremlau et
al., 2006a). TRIM5x is thought to mediate an important
barrier to zoonotic transmission of retroviruses by
preventing replication early in the viral life cycle, usually
before significant reverse transcription. The antiviral
mechanism of TRIM5x« remains incompletely characterized
but appears to involve viral uncoating as well as
recruitment to the proteasome (Anderson et al., 2006;
Stremlau et al., 2006a; Wu et al., 2006; reviewed by Towers,
2007). As PERVs have been suggested as a possible source
of zoonotic infection after pig to human xenotransplanta-
tion we sought to examine the sensitivity of PERV isolates
to restriction by mammalian TRIM5« molecules. Here, we
show that two PERV isolates, prototypic PERV A PK
(Bartosch et al, 2002) and a high-titre PERV A/C
recombinant PERV-A 14/220 (Bartosch et al., 2004), are
insensitive to restriction by divergent mammalian TRIM 50
proteins. Furthermore, we show that the higher infectivity
of the PERV A/C recombinant gag—pol is due to increased
efficiency of reverse transcription.
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METHODS

Cell lines and viral titrations. Feline cells expressing TRIM5u«
proteins from human, African green monkey (Keckesova et al., 2004),
rhesus macaque, squirrel monkey (Ylinen et al., 2005), cattle (Ylinen
et al., 2006) and rabbit (Schaller et al, 2007) have been described
previously.

PERV A and A/C recombinant gag—pol expression vectors were
generated by replacing the G ORF with PERV gag—pol derived from
PERV A (GenBank accession no. AY099323) and/or PERV A/C 14/
220 (GenBank accession no. AY570980) at the BamHI site in
phCMV-G, by PCR (Bartosch et al., 2003). Vesicular stomatitis virus
glycoprotein (VSV-G) pseudotyped viral vectors derived from HIV-1
(Bainbridge et al., 2001; Zufferey et al., 1997), MLV (Bock et al., 2000)
and simian immunodeficiency virus mac (SIVmac) (Negre et al,
2000) encoding green fluorescent protein (GFP) have been described
elsewhere and were prepared by transfection of 293T cells as described
previously (Besnier et al, 2002). PERV GFP-encoding vectors were
prepared similarly using a GFP-encoding genome derived from MLV
(Naviaux et al, 1996). PERV A/C gag—pol expression plasmids
encoding PERV A protease, reverse transcriptase or integrase were
constructed using the unique Bcll site at the protease-reverse
transcriptase junction or the unique Hpal site at the reverse
transcriptase—integrase junction.

Western blot analysis. A 1 ml sample of each viral supernatant, or
supernatant from untransfected cells, was pelleted (123000 g,
90 min) and resuspended in 30 pl Laemmli buffer. A volume of
10 pl was subjected to PAGE, blotted and detected using a rabbit anti-
PERV polyclonal antibody (Bartosch et al., 2002) (1:1000) and an
anti-rabbit horseradish peroxidase linked antibody (1:3000; GE
Healthcare).

Quantitative PCR (QPCR) to measure products of reverse
transcription. TagMan QPCR to measure viral DNA synthesis was
performed using primer/probe sequences specific to GFP as described
previously (Passerini et al, 2006). Cells (4 x 10°) were infected in six-
well plates in triplicate with equivalent doses of virus treated with
DNase (70 U ml ™! for 2 h; Promega). Six hours after infection, total
DNA was extracted from two samples using a QiaAmp DNA
extraction kit (Qiagen). The third sample was subjected to FACS
analysis 48 h after infection to enumerate infected cells. DNA
(100 ng) was subjected to TagMan QPCR as described previously
(Towers et al., 1999). Absolute numbers of GFP DNA per PCR were
determined by reference to a standard curve. The number of GFP
molecules per 100 ng total DNA were plotted. As a negative control
for plasmid contamination of the viral inoculum, cells were infected
with virus that had been boiled for 5 min. QPCR was then performed
as described above.

RESULTS

PERVs are insensitive to divergent TRIM5«a
proteins

Replication-competent PERV sequences have been divided
into three classes, PERV A, B and C, according to their
envelope sequences (Patience et al., 1997; Takeuchi et al.,
1998). PERVs A and B have been shown to be able to infect
human cells, and, importantly, naturally occurring high-
titre PERV A/C recombinants have been described with the
ability to replicate to high titres in vitro (Le Tissier et al,
1997; Oldmixon et al., 2002; Patience et al., 1997; Takeuchi

et al., 1998; Wilson et al, 2000). In order to test PERV
sensitivity to TRIM50 we made gag—pol expression vectors
for the prototypic PERV A PK and the PERV A/C 14/220
recombinant and used these plasmids to make VSV-G
pseudotyped vectors packaging GFP-encoding MLV gen-
omes as described previously (Besnier et al, 2002). These
viruses were then titrated onto permissive feline Crandall-
Reese feline kidney (CRFK) cells expressing TRIM5o
proteins from human, African green monkey, rhesus
macaque, squirrel monkey, rabbit or cattle or unmodified
CRFK cells as a negative control, as described previously
(Keckesova et al., 2004; Schaller et al., 2007; Ylinen et al.,
2005, 2006) (Fig. 1a). Forty-eight hours after exposure to
PERV, infected cells were enumerated by counting
fluorescent, GFP-expressing cells, by FACS. Infectious
titres of each virus were then calculated and plotted
(Fig. 1). Remarkably, the two PERVs were largely
insensitive to all TRIM5as tested. The strongest restriction
was by human TRIM5a, but this led to only around a
threefold reduction in infectivity.

As a positive control for the expression of each TRIM5a,
titres of restriction-sensitive VSV-G pseudotyped GFP-
encoding vectors were measured as above. In each case the
viruses were selected for sensitivity to the TRIM5a in
question. MLV-N infectivity was reduced by two to three
orders of magnitude by expression of either human or
African green monkey TRIMS5a as described elsewhere
(Hatziioannou et al., 2004; Keckesova et al., 2004; Perron et
al., 2004; Yap et al., 2004) (Fig. 1b). SIVmac infectivity was
reduced by one to two orders of magnitude by expression
of squirrel monkey or bovine TRIM5« (Fig. 1¢) and HIV-1
infectivity was reduced by expression of rabbit or rhesus
TRIM5a, as described previously (Si et al., 2006; Song et al.,
2005; Stremlau et al., 2004; Ylinen et al., 2005, 2006) (Fig.
1d). MLV-B infectivity acted as a TRIMb5a-insensitive
control and was not affected by expression of any of the
TRIM5o genes, as has been described previously
(Hatziioannou et al., 2004; Keckesova et al., 2004; Perron
et al., 2004; Schaller et al., 2007; Yap et al, 2004; Ylinen
et al., 2005, 2006) (Fig. 1b—d).

PERV A and PERV A/C VSV-G pseudotypes
contain similar amounts of p30 capsid protein

Fig. 1 demonstrates that the titre of the VSV-G pseudo-
typed PERV A/C recombinant is significantly higher than
that of the VSV-G pseudotyped PERV A. This is consistent
with previous observations made comparing PERV A and
PERV A/C viral replication in vitro (Bartosch et al., 2004).
In order to control for the dose of the two viruses we
compared the amounts of PERV capsid in the virus stocks
by Western blot analysis using a rabbit anti-PERV
polyclonal antibody to detect PERV gag (Fig. 2)
(Bartosch et al,, 2002). The blot shows that the PERV A
stocks (lanes 1 and 2) and PERV A/C stocks (lanes 3 and 4)
have similar amounts of p30 capsid, demonstrating that
each contained a similar concentration of virions.
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Supernatant from untransfected 293T cells and PERV A/C
14/220-infected cell lysate were blotted as controls (lanes 5
and 6, respectively).

Fig. 1. PERV are insensitive to divergent TRIM50 proteins. (a)
GFP-encoding VSV-G pseudotypes of PERV A (black bars) or
PERV A/C recombinant (white bars) were titrated on CRFK cells
expressing TRIM5a from human (Hu), African green monkey
(Agm), squirrel monkey (Sm), cattle (Bo), rhesus macaque (Mac)
or rabbit (Rb) or unmodified CRFK cells as a control (C). GFP-
encoding VSV-G pseudotypes of MLV-N (black bars) or MLV-B
(white bars) SIVmac (grey bars) or HIV-1 (striped bars) were
titrated onto CRFK cells expressing TRIM5a from human (Hu) or
African green monkey (Agm) (b), squirrel monkey (Sm) or cattle
(Bo) (c) or rhesus macaque (Mac) or rabbit (Rb) (d) or unmodified
CRFK cells (C) as a control. Titres are expressed as infectious
units mlI™" Gu ml™"). Errors bars indicate sp derived from two
experiments performed with independent virus stocks.

PERV A/C has more efficient reverse transcription
than PERV A

Next, we sought to map the PERV A protein responsible
for the defect in infectivity. We made VSV-G pseudotypes
using chimeric PERV A/C gag—pol, encoding individual
PERV A proteins. Pseudotypes encoding PERV A protease
or PERV A integrase were as infectious as PERV A/C
(Fig. 3a). However, PERV A/C encoding PERV A reverse
transcriptase was one to two orders of magnitude less
infectious, suggesting that PERV-A reverse transcriptase is
less efficient, and that reduced DNA synthesis leads to
reduced infectivity. To confirm the role for reverse
transcriptase we tested whether the PERV A/C recombin-
ant was better able to reverse transcribe than PERV A in
target cells. We infected cells with equal doses of PERV A
and PERV A/C recombinant for 6 h, purified total DNA
and assayed for products of reverse transcription by
Tagman QPCR, as described previously (Besnier et al,
2002; Towers et al., 1999). Data are presented as copies of
reverse transcriptase (GFP) product per 100 ng total DNA
(Fig. 3b). This experiment shows that, indeed, the
efficiency of PERV A/C reverse transcription is one to
two orders of magnitude greater than PERV A. The
increase in reverse transcriptase efficiency leads to an
increase in VSV-G pseudotype infectivity by around the

1 2 3 4 65 6

Y e

Fig. 2. PERV A and PERV A/C VSV-G pseudotypes contain
similar amounts of p30 capsid protein. Two stocks of PERV A
(lanes 1 and 2) and two stocks of PERV A/C (lanes 3 and 4) were
Western blotted to detect capsid protein. Supernatant from
untransfected 293T cells was blotted as a negative control (lane
5) and a total extract of PERV A/C 14/220-infected 293T cells
was blotted as a positive control (lane 6). The band representing
p30 capsid is marked with an arrow on the right and the position of
the 25 kDa size marker (Precision Plus Protein Standards; Bio-
Rad) is shown on the left.

-« p30 capsid
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Fig. 3. PERV A/C has more efficient reverse transcription than
PERV A. (a) VSV-G pseudotypes of PERV A/C recombinant,
PERV A or chimeric PERV A/C recombinants containing the
protease, reverse transcriptase or integrase sequences of PERV A
[PERV A/C (PRO A); PERV A/C (RT A); PERV A/C (INT A),
respectively], were titrated and titres expressed as infectious units
mi~". Errors bars indicate spb derived from two experiments
performed with independent virus stocks. (b) Equal doses of
PERV A (black bars) and A/C recombinant (white bars) VSV-G
pseudotypes were used to infect CRFK cells with a PERV A/C
recombinant at an m.o.i. of 0.3 and the cells were incubated for
6 h. Values are expressed as the number of GFP-encoding DNA
molecules per 100 ng total DNA. As a negative control, parallel
virus samples were boiled for 5 min to inactivate the virus and then
used to infect cells as shown. These samples gave background
GFP levels, demonstrating that the GFP signal is due to viral
reverse transcription. DNA prepared from uninfected cells was
also subject to QPCR as a further negative control (grey bar) (U).
Error bars indicate sb of duplicate samples and the data are
representative of three replicates.

same magnitude (Figs 1a and 3a). The reverse transcriptase
region of PERV A/C is derived from PERV C, and its
amino acid sequence is identical to that of PERV C MSL
(GenBank accession no. AF038600). PERV C reverse
transcriptase is therefore more active than that of PERV
A, possibly due to PERV C being around five million years
younger than PERV A (Bartosch et al., 2004; Niebert &
Tonjes, 2005).

DISCUSSION

It appears that PERVs, and perhaps gammaretroviruses in
general, are insensitive to restriction by TRIM5w. This is
surprising given the broad antiviral activity of some TRIMs
against distantly related lentiviruses. For example, bovine
TRIM5a restricts all the lentiviruses tested against it,
including HIV-1, HIV-2, SIVmac, feline immunodeficiency
virus and EIAV (Si et al, 2006; Ylinen et al, 2006).
Moreover, rabbit TRIM5« restricts all but STVmac (Schaller
et al, 2007) with the only viruses appearing to be
insensitive to these two non-primate TRIM5as being
MLV-B and the two PERVs described herein. Indeed,
MLV-B and the two PERVs are not sensitive to any of the
TRIM5as tested. Whilst it is clear that these studies are
limited by the relatively small number of viruses they
employ, we believe that their diversity is broad enough to
demonstrate that gammaretroviruses are significantly less
sensitive to restriction by TRIM5o molecules. A recent
study has suggested that human TRIM5a protected
humans from a gammaretrovirus found endogenized in
the chimpanzee genome referred to as ptERV (Kaiser et al.,
2007). Whilst this theory seems reasonable, it is somewhat
undermined by the observation that neither human nor
chimpanzee TRIM>5as restrict MLVs bearing ptERV capsids
(Perez-Caballero et al., 2008). This more recent obser-
vation suggests that the constructs used by Kaiser et al.,
which were derived from calculated consensus sequence,
do not represent the behaviour of the ptERV virus.

The reason for poor sensitivity of gammaretroviruses to
TRIM5a may lie in the capsid structure. Intriguingly, the
region of the capsid shown to influence primate lentiviral
sensitivity to TRIM5a, referred to as the cyclophilin A-
binding loop, is missing in the MLV capsid, although the
rest of the N-terminal capsid structure is highly conserved
(Mortuza et al, 2004). As changes in the cyclophilin-
binding loop affect primate lentiviral sensitivity to
restriction by TRIM5a (Berthoux et al., 2005; Keckesova
et al., 2006; Lin & Emerman, 2008; Stremlau et al., 2006b;
Ylinen et al., 2005), we speculate that this structure in
gammaretroviruses has contributed to their general
insensitivity to TRIM5a. It is striking that MLV-N is the
only MLV shown to be restricted by TRIM5a
(Hatziioannou et al., 2004; Keckesova et al., 2004; Perron
et al., 2004; Si et al., 2006; Song et al., 2005; Yap et al., 2004;
Ylinen et al., 2005, 2006). MLV-N is essentially a point
mutant of MLV-B and we suspect that the E110 to R MLV-
B capsid change was selected by evolutionary pressure from
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Fig. 4. Alignment of capsid sequences from
15 PERVs indicates a high level of conser-
vation. Sequences were retrieved and aligned
using DNADynamo (Bluetractor Software) and
Se-Al (Rambaut, 1996). GenBank accession
numbers are shown, as is the classification into
groups A, B or C according to Takeuchi et al.
(1998). The PERV A and PERV A/C recombi-
nants used in this study are included. The
arrowhead indicates the PERV CA residue
homologous to position CA 110 in MLV that
influences sensitivity to restriction by TRIM5a.
Dots indicate conserved residues.
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the murine antiviral Fvl N, giving an advantage in Fvl B-
encoding mice but rendering it rather sensitive to
restriction by TRIM5a.

The experiments performed here have made use of VSV-G
pseudotyped retroviral vectors produced in human 293T
cells and overexpression of TRIM5¢ proteins in CRFK cells.
It is therefore possible that this experimental system might
have influenced the results. However, this system has been
very helpful in determining TRIM5a sensitivities in the
past. Furthermore, it has been consistent with what we
know of tropism of retroviruses in vivo, for example the
lack of HIV-1 replication in monkeys, which can be
bypassed, at least in vitro, by obviating TRIM5o and
APOBEC3G restriction (Hatziioannou et al., 2006). In our
view, overexpression of TRIM5a in vitro is unlikely to lead
to specificity artefacts, on the basis that TRIM5u« is strongly
induced by interferon and therefore protein levels are likely
to be high during viral infection in vivo (Asaoka et al.,
2005; Sakuma ef al., 2007). Overexpression experiments are
therefore a sensitive and relevant test of restriction
sensitivity, although reduction of TRIM5o expression in
relevant cell types and demonstration that PERV titres are
not significantly affected would also augment the experi-
ments described here.

We conclude that the two PERVs are not significantly
restricted by any of the TRIM 5« molecules tested (Fig. 1a).
The strongest restriction is threefold, by human TRIM5¢,
which is about the same magnitude that HIV-1 is restricted
by human TRIM5a when overexpressed (Hatziioannou
et al., 2003; Newman et al., 2006; Stremlau et al., 2004; Yap
et al., 2004), indicating that it is unlikely to act as a barrier
to PERV cross-species transmission. The two PERV
sequences tested are likely to be representative of PERV
classes A, B and C on the basis that the capsid sequences of
these viruses are closely related (Fig. 4). Not only are they
highly conserved, but the residue corresponding to MLV
CA 110 (indicated by an arrowhead in Fig 4) known to
influence MLV sensitivity to TRIM5a (Perron et al., 2004;
Towers et al., 2000) is a conserved glutamate as it is in
unrestricted MLV-B. This class of PERVs in general are
therefore unlikely to be restricted by mammalian TRIM5«
molecules. It is clear, however, that TRIM5u is not the only
barrier to species-specific retroviral infection. Human
APOBEC3G strongly restricts PERVs (Jonsson et al.,
2007) and human tetherin is likely to restrict PERVs, given
that it restricts closely related MLVs (Neil et al, 2008).
There are also many other human TRIM proteins that may
restrict PERVs (Nisole et al, 2005). Our data therefore
merely consider a single aspect of species barriers to
zoonosis, which are likely to be complex and mediated by a
large arsenal of species-specific antiviral proteins. Having
said that, MLVs do appear to be particularly successful in
transmitting between species, as illustrated by the diversity
of gammaretroviral sequences in mammalian genomes,
suggesting that they might be well adapted to avoiding
restriction (Martin et al., 1999, 2003).

We assume that the higher reverse transcriptase activity of
the recombinant virus is due to its acquiring a PERV C
reverse transcriptase sequence that has been inserted into
the pig genome around five million years more recently
than the PERV A sequence (Niebert & Tonjes, 2005). The
more recent endogenization of the PERV C means that its
reverse transcriptase sequence has been subject to fewer
deleterious mutations, leading to higher activity. The
apparent ease with which the relatively less infectious
PERV A can acquire PERV C sequences to become highly
infectious illustrates the plasticity of retroviruses and under-
lines the risk posed by introducing them into immunosup-
pressed individuals during xenotransplantation. This, and
their apparent insensitivity to the important species barrier
provided by TRIM5¢x, underscores the need to consider the
possibility of zoonotic transmission occurring in the context
of pig to human xenotransplantation.
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