8,925 research outputs found
Certificate Transparency with Enhancements and Short Proofs
Browsers can detect malicious websites that are provisioned with forged or
fake TLS/SSL certificates. However, they are not so good at detecting malicious
websites if they are provisioned with mistakenly issued certificates or
certificates that have been issued by a compromised certificate authority.
Google proposed certificate transparency which is an open framework to monitor
and audit certificates in real time. Thereafter, a few other certificate
transparency schemes have been proposed which can even handle revocation. All
currently known constructions use Merkle hash trees and have proof size
logarithmic in the number of certificates/domain owners.
We present a new certificate transparency scheme with short (constant size)
proofs. Our construction makes use of dynamic bilinear-map accumulators. The
scheme has many desirable properties like efficient revocation, low
verification cost and update costs comparable to the existing schemes. We
provide proofs of security and evaluate the performance of our scheme.Comment: A preliminary version of the paper was published in ACISP 201
Double Inverse Stochastic Resonance with Dynamic Synapses
We investigate the behavior of a model neuron that receives a
biophysically-realistic noisy post-synaptic current based on uncorrelated
spiking activity from a large number of afferents. We show that, with static
synapses, such noise can give rise to inverse stochastic resonance (ISR) as a
function of the presynaptic firing rate. We compare this to the case with
dynamic synapses that feature short-term synaptic plasticity, and show that the
interval of presynaptic firing rate over which ISR exists can be extended or
diminished. We consider both short-term depression and facilitation.
Interestingly, we find that a double inverse stochastic resonance (DISR), with
two distinct wells centered at different presynaptic firing rates, can appear.Comment: 12 pages, 7 figure
Top quark forward-backward asymmetry from the model
The forward-backward asymmetry in top quark pair production,
measured at the Tevatron, is probably related to the contribution of new
particles. The Tevatron result is more than a deviation from the
standard model prediction and motivates the application of alternative models
introducing new states.
However, as the standard model predictions for the total cross section
and invariant mass distribution for this process are in
good agreement with experiments, any alternative model must reproduce these
predictions. These models can be placed into two categories: One introduces the
s-channel exchange of new vector bosons with chiral couplings to the light
quarks and to the top quark and another relies on the t-channel exchange of
particles with large flavor-violating couplings in the quark sector. In this
work we employ a model which introduces both s- and t-channel nonstandard
contributions for the top quark pair production in proton antiproton
collisions. We use the minimal version of the model (3-3-1 model) that predicts the existence of a new neutral gauge
boson, called . This gauge boson has both flavor-changing couplings
to up and top quarks and chiral coupling to the light quarks and to the top
quark. This very peculiar model coupling can correct the for top quark
pair production for two ranges of mass while leading to cross
section and invariant mass distribution quite similar to the standard model
ones. This result reinforces the role of the 3-3-1 model for any new physics
effect.Comment: 12 pages, 4 figures, 2 table
- …