70 research outputs found

    Values Mapping and Counter-Mapping in Contested Landscapes: an Olympic Peninsula (USA) Case Study

    Get PDF
    Indigenous peoples, local communities, and other groups can use counter-mapping to make land claims, identify areas of desired access, or convey cultural values that diverge from the dominant paradigm. While sometimes created independently, counter-maps also can be formulated during public participation mapping events sponsored by natural resource planning agencies. Public participation mapping elicits values, uses, and meanings of landscapes from diverse stakeholders, yet individuals and advocacy groups can use the mapping process as an opportunity to make visible strongly held values and viewpoints. We present three cases from the Olympic Peninsula in Washington State to illustrate how stakeholders intentionally used landscape-values mapping workshops to amplify their perspectives in attempts to further political outcomes. We combine geospatial analysis with qualitative data to explore ways that landscape-values mapping were used as a political tool and how social scientists engaged in similar efforts can defend the scientific integrity of results

    Suppressed absolute negative conductance and generation of high-frequency radiation in semiconductor superlattices

    Full text link
    We show that space-charge instabilities (electric field domains) in semiconductor superlattices are the attribute of absolute negative conductance induced by small constant and large alternating electric fields. We propose the efficient method for suppression of this destructive phenomenon in order to obtain a generation at microwave and THz frequencies in devices operating at room temperature. We theoretically proved that an unbiased superlattice with a moderate doping subjected to a microwave pump field provides a strong gain at third, fifth, seventh, etc. harmonics of the pump frequency in the conditions of suppressed domains.Comment: 8 pages. Development of cond-mat/0503216 . Version 2: Final version, erratum is include

    Nonequilibrium phenomena in high Landau levels

    Full text link
    Developments in the physics of 2D electron systems during the last decade have revealed a new class of nonequilibrium phenomena in the presence of a moderately strong magnetic field. The hallmark of these phenomena is magnetoresistance oscillations generated by the external forces that drive the electron system out of equilibrium. The rich set of dramatic phenomena of this kind, discovered in high mobility semiconductor nanostructures, includes, in particular, microwave radiation-induced resistance oscillations and zero-resistance states, as well as Hall field-induced resistance oscillations and associated zero-differential resistance states. We review the experimental manifestations of these phenomena and the unified theoretical framework for describing them in terms of a quantum kinetic equation. The survey contains also a thorough discussion of the magnetotransport properties of 2D electrons in the linear response regime, as well as an outlook on future directions, including related nonequilibrium phenomena in other 2D electron systems.Comment: 60 pages, 41 figure

    Mycobacterium tuberculosis Glucosyl-3-Phosphoglycerate Synthase: Structure of a Key Enzyme in Methylglucose Lipopolysaccharide Biosynthesis

    Get PDF
    Tuberculosis constitutes today a serious threat to human health worldwide, aggravated by the increasing number of identified multi-resistant strains of Mycobacterium tuberculosis, its causative agent, as well as by the lack of development of novel mycobactericidal compounds for the last few decades. The increased resilience of this pathogen is due, to a great extent, to its complex, polysaccharide-rich, and unusually impermeable cell wall. The synthesis of this essential structure is still poorly understood despite the fact that enzymes involved in glycosidic bond synthesis represent more than 1% of all M. tuberculosis ORFs identified to date. One of them is GpgS, a retaining glycosyltransferase (GT) with low sequence homology to any other GTs of known structure, which has been identified in two species of mycobacteria and shown to be essential for the survival of M. tuberculosis. To further understand the biochemical properties of M. tuberculosis GpgS, we determined the three-dimensional structure of the apo enzyme, as well as of its ternary complex with UDP and 3-phosphoglycerate, by X-ray crystallography, to a resolution of 2.5 and 2.7 Ã…, respectively. GpgS, the first enzyme from the newly established GT-81 family to be structurally characterized, displays a dimeric architecture with an overall fold similar to that of other GT-A-type glycosyltransferases. These three-dimensional structures provide a molecular explanation for the enzyme's preference for UDP-containing donor substrates, as well as for its glucose versus mannose discrimination, and uncover the structural determinants for acceptor substrate selectivity. Glycosyltransferases constitute a growing family of enzymes for which structural and mechanistic data urges. The three-dimensional structures of M. tuberculosis GpgS now determined provide such data for a novel enzyme family, clearly establishing the molecular determinants for substrate recognition and catalysis, while providing an experimental scaffold for the structure-based rational design of specific inhibitors, which lay the foundation for the development of novel anti-tuberculosis therapies
    • …
    corecore