1,499 research outputs found

    Coulomb potential from a particle in uniform ultrarelativistic motion

    Get PDF
    The Coulomb potential produced by an ultrarelativistic particle (such as a heavy ion) in uniform motion is shown in the appropriate gauge to factorize into a longitudinal Dirac delta function of (z - t) times the simple two dimensional potential solution in the transverse direction. This form makes manifest the source of the energy independence of the interaction.Comment: 5 pages, latex, revtex source, no figure

    Some exact analytical results and a semi-empirical formula for single electron ionization induced by ultrarelativistic heavy ions

    Get PDF
    The delta function gauge of the electromagnetic potential allows semiclassical formulas to be obtained for the probability of exciting a single electron out of the ground state in an ultrarelativistic heavy ion reaction. Exact formulas have been obtained in the limits of zero impact parameter and large, perturbative, impact parameter. The perturbative impact parameter result can be exploited to obtain a semi-empirical cross section formula of the form, sigma = A ln(gamma) + B, for single electron ionization. A and B can be evaluated for any combination of target and projectile, and the resulting simple formula is good at all ultrarelativistic energies. The analytical form of A and B elucidates a result previously found in numerical calculations: scaled ionization cross sections decrease with increasing charge of the nucleus being ionized. The cross section values obtained from the present formula are in good agreement with recent CERN SPS data from a Pb beam on various nuclear targets.Comment: 14 pages, latex, revtex source, no figure

    Heavy Ion e+ e- Pairs to All Orders in Z alpha

    Full text link
    The heavy ion cross section for continuum e+ e- pair production has been calculated to all orders in Z alpha. Comparison is made with available CERN SPS and RHIC STAR data. Computed cross sections are found to be reduced from perturbation theory with increasing charge of the colliding heavy ions and for all energy and momentum regions investigated. Au or Pb total cross sections are reduced by 28% (SPS), 17% (RHIC),and 11% (LHC). For very high energy (E_e+, E_e- > 3 GeV) forward pairs at LHC the reduction from perturbation theory is a bit larger (17%). Use of zero degree calorimeter triggering (and thus small impact parameter weighting) makes impact parameter representation of exact pair production useful. Preliminary exact calculations in the zero impact parameter limit show a much larger reduction from perturbation theory (about 40%) at both RHIC and LHC.Comment: 4 pages, poster proceedings from Quark Matter 200

    Higher Order QED Calculation of Ultrarelativistic Heavy Ion Production of mu+ mu- Pairs

    Full text link
    A higher order QED calculation of the ultraperipheral heavy ion cross section for mu+ mu- pair production at RHIC and LHC is carried out. The so-called "Coulomb corrections" lead to an even greater percentage decrease of mu+ mu- production from perturbation theory than the corresponding decrease for e+ e- pair production. Unlike the e+ e- case, the finite charge distribution of the ions (form factor) and the necessary subtraction of impact parameters with matter overlap are significant effects in calculation an observable ultraperipheral mu+ mu- total cross section.Comment: 7 pages, 3 figures. Version expanded with explanatory text and two appendices on form factor treatmen

    Two Center Light Cone Calculation of Pair Production Induced by Ultrarelativistic Heavy Ions

    Full text link
    An exact solution of the two center time-dependent Dirac equation for pair production induced by ultrarelativistic heavy ion collisions is presented. Cross sections to specific final states approach those of perturbation theory. Multiplicity rates are reduced from perturbation theory.Comment: 22 pages, latex, revtex source, one postscript figur

    Correlated forward-backward dissociation and neutron spectra as a luminosity monitor in heavy ion colliders

    Full text link
    Detection in zero degree calorimeters of the correlated forward-backward Coulomb or nuclear dissociation of two colliding nuclei is presented as a practical luminosity monitor in heavy ion colliders. Complementary predictions are given for total correlated Coulomb plus nuclear dissociation and for correlated forward-backward single neutrons from the giant dipole peak.Comment: 16 pages, latex, revtex source, four postscript figure

    Higher order QED in high mass e+ e- pairs production at RHIC

    Full text link
    Lowest order and higher order QED calculations have been carried out for the RHIC high mass e+ e- pairs observed by PHENIX with single ZDC triggers. The lowest order QED results for the experimental acceptance are about two standard deviations larger than the PHENIX data. Corresponding higher order QED calculations are within one standard deviation of the data.Comment: 2 page

    Evidence for higher order QED in e+ e- pair production at RHIC

    Full text link
    A new lowest order QED calculation for RHIC e+ e- pair production has been carried out with a phenomenological treatment of the Coulomb dissociation of the heavy ion nuclei observed in the STAR ZDC triggers. The lowest order QED result for the experimental acceptance is nearly two standard deviations larger than the STAR data. A corresponding higher order QED calculation is consistent with the data.Comment: 4 pages, 4 figures, latex, revte
    • …
    corecore