3,445 research outputs found

    Low mass neutralino dark matter in mSUGRA and more general models in the light of LHC data

    Full text link
    The b\tau j \etslash signal at the ongoing LHC experiments is simulated with Pythia in the mSUGRA and other models of SUSY breaking. Special attention is given on the compatibility of this signature with the low mass neutralino dark matter (LMNDM) scenario consistent with WMAP data. In the mSUGRA model the above signal as well as the LMNDM scenario are strongly disfavoured due to the constraints from the on going SUSY searches at the LHC. This tension, however, originates from the model dependent correlations among the parameters in the strong and electroweak sectors of mSUGRA. That there is no serious conflict between the LMNDM scenario and the LHC data is demonstrated by constructing generic phenomenological models such that the strong sector is unconstrained or mildly constrained by the existing LHC data and parameters in the electroweak sector, unrelated to the strong sector,yield DM relic density consistent with the WMAP data. The proposed models, fairly insensitive to the conventional SUSY searches in the jets + \etslash and other channels, yield observable signal in the suggested channel for \lum \gsim 1 \ifb of data. They are also consistent with the LMNDM scenario and can be tested by the direct dark matter search experiments in the near future. Some of these models can be realized by non-universal scalar and gaugino masses at the GUT scale.Comment: 33 pages, 2 figures, analyses updated for 1 fb^{-1} of LHC data and presented in a new section, some new references have been added, published in Phys. Rev.

    Slepton Oscillation at Large Hadron Collider

    Get PDF
    Measurement of Lepton-Flavor Violation (LFV) in the minimal SUSY Standard Model (MSSM) at Large Hadron Collider (LHC) is studied based on a realistic simulation. We consider the LFV decay of the second-lightest neutralino, χ~20l~lllχ~10\tilde{\chi}^0_2 \to \tilde{l} l' \to l l' \tilde{\chi}^0_1, in the case where the flavor mixing exists in the right-handed sleptons. We scan the parameter space of the minimal supergravity model (MSUGRA) and a more generic model in which we take the Higgsino mass μ\mu as a free parameter. We find that the possibility of observing LFV at LHC is higher if μ\mu is smaller than the MSUGRA prediction; the LFV search at LHC can cover the parameter range where the μeγ\mu \to e \gamma decay can be suppressed by the cancellation among the diagrams for this case.Comment: 29 pages, 10 figure

    Scenery from the Top: Study of the Third Generation Squarks at CERN LHC

    Get PDF
    In the minimal supersymmetric standard model (MSSM) properties of the third generation sfermions are important from the viewpoint of discriminating the SUSY breaking models and in the determination of the Higgs boson mass. If gluinos are copiously produced at CERN LHC, gluino decays into tb through stop and sbottom can be studied using hadronic decays of the top quark. The kinematical endpoint of the gluino decays can be evaluated using a W sideband method to estimate combinatorial backgrounds. This implies that fundamental parameters related to the third generation squarks can be reliably measured. The top-quark polarization dependence in the decay process may also be extracted by looking at the b jet distribution near the kinematical endpoint.Comment: 4 pages in PRL format, 4 Postscript figures, uses revtex

    Slepton mass-splittings as a signal of LFV at the LHC

    Full text link
    Precise measurements of slepton mass-splittings might represent a powerful tool to probe supersymmetric (SUSY) lepton flavour violation (LFV) at the LHC. We point out that mass-splittings of the first two generations of sleptons are especially sensitive to LFV effects involving τμ\tau-\mu transitions. If these mass-splittings are LFV induced, high-energy LFV processes like the neutralino decay {\nt}_2\to\nt_1\tau^{\pm}\mu^{\mp} as well as low-energy LFV processes like τμγ\tau\to\mu\gamma are unavoidable. We show that precise slepton mass-splitting measurements and LFV processes both at the high- and low-energy scales are highly complementary in the attempt to (partially) reconstruct the flavour sector of the SUSY model at work. The present study represents another proof of the synergy and interplay existing between the LHC, i.e. the {\em high-energy frontier}, and high-precision low-energy experiments, i.e. the {\em high-intensity frontier}.Comment: 11 pages, 5 figures. v2: added discussion on backgrounds, added references, version to be published on JHE

    Constraining SUSY Dark Matter with the ATLAS Detector at the LHC

    Full text link
    In the event that R-Parity conserving supersymmetry (SUSY) is discovered at the LHC, a key issue which will need to be addressed will be the consistency of that signal with astrophysical and non-accelerator constraints on SUSY Dark Matter. This issue is studied for the SPS1a mSUGRA benchmark model by using measurements of end-points and thresholds in the invariant mass spectra of various combinations of leptons and jets in ATLAS to constrain the model parameters. These constraints are then used to assess the statistical accuracy with which quantities such as the Dark Matter relic density and direct detection cross-section can be measured. Systematic effects arising from the use of different mSUGRA RGE codes are also estimated. Results indicate that for SPS1a a statistical(systematic) precision on the relic abundance ~ 2.8% (3 %) can be obtained given 300 fb-1 of data.Comment: 11 pages, 10 encapsulated postscript figures. Minor modification to ref

    Searches for phenomena beyond the Standard Model at the LHC with the ATLAS and CMS detectors

    Full text link
    The LHC has delivered several fb-1 of data in spring and summer 2011, opening new windows of opportunity for discovering phenomena beyond the Standard Model. A summary of the searches conducted by the ATLAS and CMS experiments based on about 1 fb-1 of data is presented.Comment: Presented at Lepton-Photon 2011, Mumbai, India; 10 pages, 11 figure

    Testing the Nambu-Goldstone Hypothesis for Quarks and Leptons at the LHC

    Get PDF
    The hierarchy of the Yukawa couplings is an outstanding problem of the standard model. We present a class of models in which the first and second generation fermions are SUSY partners of pseudo-Nambu-Goldstone bosons that parameterize a non-compact Kahler manifold, explaining the small values of these fermion masses relative to those of the third generation. We also provide an example of such a model. We find that various regions of the parameter space in this scenario can give the correct dark matter abundance, and that nearly all of these regions evade other phenomenological constraints. We show that for gluino mass ~700 GeV, model points from these regions can be easily distinguished from other mSUGRA points at the LHC with only 7 fb^(-1) of integrated luminosity at 14 TeV. The most striking signatures are a dearth of b- and tau-jets, a great number of multi-lepton events, and either an "inverted" slepton mass hierarchy, narrowed slepton mass hierarchy, or characteristic small-mu spectrum.Comment: Corresponds to published versio

    Scrutinizing LSP Dark Matter at the LHC

    Get PDF
    We show that LHC experiments might well be able to determine all the parameters required for a prediction of the present density of thermal LSP relics from the Big Bang era. If the LSP is an almost pure bino we usually only need to determine its mass and the mass of the SU(2) singlet sleptons. This information can be obtained by reconstructing the cascade q~Lχ~20q~Rqχ~10+q\tilde{q}_L \to \tilde{\chi}_2^0 q \to \tilde{\ell}_R \ell q \to \tilde{\chi}_1^0 \ell^+ \ell^- q. The only requirement is that m~R<mχ~20m_{\tilde{\ell}_R} < m_{\tilde{\chi}_2^0}, which is true for most of the cosmologically interesting parameter space. If the LSP has a significant higgsino component, its predicted thermal relic density is smaller than for an equal--mass bino. We show that in this case squark decays also produce significant numbers of χ~40\tilde{\chi}_4^0 and χ~2±\tilde{\chi}_2^\pm. Reconstructing the corresponding decay cascades then allows to determine the higgsino component of the LSP

    Momentum asymmetries as CP violating observables

    Full text link
    Three body decays can exhibit CP violation that arises from interfering diagrams with different orderings of the final state particles. We construct several momentum asymmetry observables that are accessible in a hadron collider environment where some of the final state particles are not reconstructed and not all the kinematic information can be extracted. We discuss the complications that arise from the different possible production mechanisms of the decaying particle. Examples involving heavy neutralino decays in supersymmetric theories and heavy Majorana neutrino decays in Type-I seesaw models are examined.Comment: 20 pages, 9 figures. Clarifying comments and one reference added, matches published versio

    Wedgebox analysis of four-lepton events from neutralino pair production at the LHC

    Get PDF
    `Wedgebox' plots constructed by plotting the di-electron invariant mass versus the di-muon invariant mass from pp -> e^+e^- mu^+ mu^- + missing energy signature LHC events. Data sets of such events are obtained across the MSSM input parameter space in event-generator simulations, including cuts designed to remove SM backgrounds. Their study reveals several general features: (1)Regions in the MSSM input parameter space where a sufficient number of events are expected so as to be able to construct a clear wedgebox plot are delineated. (2)The presence of box shapes on a wedgebox plot either indicates the presence of heavy Higgs bosons decays or restricts the location to a quite small region of low \mu and M_2 values \lsim 200 GeV, a region denoted as the `lower island'. In this region, wedgebox plots can be quite complicated and change in pattern rather quickly as one moves around in the (\mu, M_2) plane. (3)Direct neutralino pair production from an intermediate Z^{0*} may only produce a wedge-shape since only \widetilde{\chi}_2^0\widetilde{\chi}_3^0 decays can contribute significantly. (4)A double-wedge or wedge-protruding-from-a-box pattern on a wedgebox plot, which results from combining a variety of MSSM production processes, yields three distinct observed endpoints, almost always attributable to \widetilde{\chi}_{2,3,4}^0 \to \widetilde{\chi}_1^0 \ell^+\ell^- decays, which can be utilized to determine a great deal of information about the neutralino and slepton mass spectra and related MSSM input parameters. Wedge and double-wedge patterns are seen in wedgebox plots in another region of higher \mu and M_2 values, denoted as the`upper island.' Here the pattern is simpler and more stable as one moves across the (\mu, M_2) input parameter space.Comment: 28 pages (LaTeX), 8 figures (encapsulated postscript
    corecore