366 research outputs found
Early experiments on automatic annotation of Portuguese medieval texts
This paper presents the challenges and solutions adopted to the lemmatization and part-of-speech (PoS) tagging of a corpus of Old Portuguese texts (up to 1525), to pave the way to the implementation of an automatic annotation of these Medieval texts. A highly granular tagset, previously devised for Modern Portuguese, was adapted to this end. A large text (∼155 thousand words) was manually annotated for PoS and lemmata and used to train an initial PoS-tagger model. When applied to two other texts, the resulting model attained 91.2% precision with a textual variant of the same text, and 67.4% with a new, unseen text. A second model was then trained with the data provided by the previous three texts and applied to two other unseen texts. The new model achieved a precision of 77.3% and 82.4%, respectively.info:eu-repo/semantics/acceptedVersio
Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces
We present a Monte Carlo (MC) grid-based model for the drying of drops of a
nanoparticle suspension upon a heterogeneous surface. The model consists of a
generalised lattice-gas in which the interaction parameters in the Hamiltonian
can be varied to model different properties of the materials involved. We show
how to choose correctly the interactions, to minimise the effects of the
underlying grid so that hemispherical droplets form. We also include the
effects of surface roughness to examine the effects of contact-line pinning on
the dynamics. When there is a `lid' above the system, which prevents
evaporation, equilibrium drops form on the surface, which we use to determine
the contact angle and how it varies as the parameters of the model are changed.
This enables us to relate the interaction parameters to the materials used in
applications. The model has also been applied to drying on heterogeneous
surfaces, in particular to the case where the suspension is deposited on a
surface consisting of a pair of hydrophilic conducting metal surfaces that are
either side of a band of hydrophobic insulating polymer. This situation occurs
when using inkjet printing to manufacture electrical connections between the
metallic parts of the surface. The process is not always without problems,
since the liquid can dewet from the hydrophobic part of the surface, breaking
the bridge before the drying process is complete. The MC model reproduces the
observed dewetting, allowing the parameters to be varied so that the conditions
for the best connection can be established. We show that if the hydrophobic
portion of the surface is located at a step below the height of the
neighbouring metal, the chance of dewetting of the liquid during the drying
process is significantly reduced.Comment: 14 pages, 14 figure
Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling
This paper considers the interaction between two droplets placed on a
substrate in immediate vicinity. We show here that when the two droplets are of
different fluids and especially when one of the droplet is highly volatile, a
wealth of fascinating phenomena can be observed. In particular, the interaction
may result in the actuation of the droplet system, i.e. its displacement over a
finite length. In order to control this displacement, we consider droplets
confined on a hydrophilic stripe created by plasma-treating a PDMS substrate.
This controlled actuation opens up unexplored opportunities in the field of
microfluidics. In order to explain the observed actuation phenomenon, we
propose a simple phenomenological model based on Newton's second law and a
simple balance between the driving force arising from surface energy gradients
and the viscous resistive force. This simple model is able to reproduce
qualitatively and quantitatively the observed droplet dynamics
Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces
When a liquid drops impinges a hydrophobic rough surface it can either bounce
off the surface (fakir droplets) or be impaled and strongly stuck on it (Wenzel
droplets). The analysis of drop impact and quasi static ''loading'' experiments
on model microfabricated surfaces allows to clearly identify the forces
hindering the impalement transitions. A simple semi-quantitative model is
proposed to account for the observed relation between the surface topography
and the robustness of fakir non-wetting states. Motivated by potential
applications in microfluidics and in the fabrication of self cleaning surfaces,
we finally propose some guidelines to design robust superhydrophobic surfaces.Comment: 7 pages, 5 figure
Interfacial motion in flexo- and order-electric switching between nematic filled states
We consider a nematic liquid crystal, in coexistence with its isotropic
phase, in contact with a substrate patterned with rectangular grooves. In such
a system, the nematic phase may fill the grooves without the occurrence of
complete wetting. There may exist multiple (meta)stable filled states, each
characterised by the type of distortion (bend or splay) in each corner of the
groove and by the shape of the nematic-isotropic interface, and additionally
the plateaux that separate the grooves may be either dry or wet with a thin
layer of nematic. Using numerical simulations, we analyse the dynamical
response of the system to an externally- applied electric field, with the aim
of identifying switching transitions between these filled states. We find that
order-electric coupling between the fluid and the field provides a means of
switching between states where the plateaux between grooves are dry and states
where they are wet by a nematic layer, without affecting the configuration of
the nematic within the groove. We find that flexoelectric coupling may change
the nematic texture in the groove, provided that the flexoelectric coupling
differentiates between the types of distortion at the corners of the substrate.
We identify intermediate stages of the transitions, and the role played by the
motion of the nematic-isotropic interface. We determine quantitatively the
field magnitudes and orientations required to effect each type of transition.Comment: 14 pages, 12 fig
FINE: Fisher Information Non-parametric Embedding
We consider the problems of clustering, classification, and visualization of
high-dimensional data when no straightforward Euclidean representation exists.
Typically, these tasks are performed by first reducing the high-dimensional
data to some lower dimensional Euclidean space, as many manifold learning
methods have been developed for this task. In many practical problems however,
the assumption of a Euclidean manifold cannot be justified. In these cases, a
more appropriate assumption would be that the data lies on a statistical
manifold, or a manifold of probability density functions (PDFs). In this paper
we propose using the properties of information geometry in order to define
similarities between data sets using the Fisher information metric. We will
show this metric can be approximated using entirely non-parametric methods, as
the parameterization of the manifold is generally unknown. Furthermore, by
using multi-dimensional scaling methods, we are able to embed the corresponding
PDFs into a low-dimensional Euclidean space. This not only allows for
classification of the data, but also visualization of the manifold. As a whole,
we refer to our framework as Fisher Information Non-parametric Embedding
(FINE), and illustrate its uses on a variety of practical problems, including
bio-medical applications and document classification.Comment: 30 pages, 21 figure
Piercing an interface with a brush: collaborative stiffening
The hairs of a painting brush withdrawn from a wetting liquid self-assemble
into clumps whose sizes rely on a balance between liquid surface tension and
hairs bending rigidity. Here we study the situation of an immersed carpet in an
evaporating liquid bath : the free extremities of the hairs are forced to
pierce the liquid interface. The compressive capillary force on the tip of
flexible hairs leads to buckling and collapse. However we find that the
spontaneous association of hairs into stronger bundles may allow them to resist
capillary buckling. We explore in detail the different structures obtained and
compare them with similar patterns observed in micro-structured surfaces such
as carbon nanotubes "forests".Comment: 9 pages, 6 figure
Dynamics of the spontaneous breakdown of superhydrophobicity
Drops deposited on rough and hydrophobic surfaces can stay suspended with gas
pockets underneath the liquid, then showing very low hydrodynamic resistance.
When this superhydrophobic state breaks down, the subsequent wetting process
can show different dynamical properties. A suitable choice of the geometry can
make the wetting front propagate in a stepwise manner leading to {\it
square-shaped} wetted area: the front propagation is slow and the patterned
surface fills by rows through a {\it zipping} mechanism. The multiple time
scale scenario of this wetting process is experimentally characterized and
compared to numerical simulations.Comment: 7 pages, 5 figure
- …