366 research outputs found

    Early experiments on automatic annotation of Portuguese medieval texts

    Get PDF
    This paper presents the challenges and solutions adopted to the lemmatization and part-of-speech (PoS) tagging of a corpus of Old Portuguese texts (up to 1525), to pave the way to the implementation of an automatic annotation of these Medieval texts. A highly granular tagset, previously devised for Modern Portuguese, was adapted to this end. A large text (∼155 thousand words) was manually annotated for PoS and lemmata and used to train an initial PoS-tagger model. When applied to two other texts, the resulting model attained 91.2% precision with a textual variant of the same text, and 67.4% with a new, unseen text. A second model was then trained with the data provided by the previous three texts and applied to two other unseen texts. The new model achieved a precision of 77.3% and 82.4%, respectively.info:eu-repo/semantics/acceptedVersio

    Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces

    Get PDF
    We present a Monte Carlo (MC) grid-based model for the drying of drops of a nanoparticle suspension upon a heterogeneous surface. The model consists of a generalised lattice-gas in which the interaction parameters in the Hamiltonian can be varied to model different properties of the materials involved. We show how to choose correctly the interactions, to minimise the effects of the underlying grid so that hemispherical droplets form. We also include the effects of surface roughness to examine the effects of contact-line pinning on the dynamics. When there is a `lid' above the system, which prevents evaporation, equilibrium drops form on the surface, which we use to determine the contact angle and how it varies as the parameters of the model are changed. This enables us to relate the interaction parameters to the materials used in applications. The model has also been applied to drying on heterogeneous surfaces, in particular to the case where the suspension is deposited on a surface consisting of a pair of hydrophilic conducting metal surfaces that are either side of a band of hydrophobic insulating polymer. This situation occurs when using inkjet printing to manufacture electrical connections between the metallic parts of the surface. The process is not always without problems, since the liquid can dewet from the hydrophobic part of the surface, breaking the bridge before the drying process is complete. The MC model reproduces the observed dewetting, allowing the parameters to be varied so that the conditions for the best connection can be established. We show that if the hydrophobic portion of the surface is located at a step below the height of the neighbouring metal, the chance of dewetting of the liquid during the drying process is significantly reduced.Comment: 14 pages, 14 figure

    Droplet actuation induced by coalescence: experimental evidences and phenomenological modeling

    Full text link
    This paper considers the interaction between two droplets placed on a substrate in immediate vicinity. We show here that when the two droplets are of different fluids and especially when one of the droplet is highly volatile, a wealth of fascinating phenomena can be observed. In particular, the interaction may result in the actuation of the droplet system, i.e. its displacement over a finite length. In order to control this displacement, we consider droplets confined on a hydrophilic stripe created by plasma-treating a PDMS substrate. This controlled actuation opens up unexplored opportunities in the field of microfluidics. In order to explain the observed actuation phenomenon, we propose a simple phenomenological model based on Newton's second law and a simple balance between the driving force arising from surface energy gradients and the viscous resistive force. This simple model is able to reproduce qualitatively and quantitatively the observed droplet dynamics

    Bouncing or sticky droplets: impalement transitions on superhydrophobic micropatterned surfaces

    Full text link
    When a liquid drops impinges a hydrophobic rough surface it can either bounce off the surface (fakir droplets) or be impaled and strongly stuck on it (Wenzel droplets). The analysis of drop impact and quasi static ''loading'' experiments on model microfabricated surfaces allows to clearly identify the forces hindering the impalement transitions. A simple semi-quantitative model is proposed to account for the observed relation between the surface topography and the robustness of fakir non-wetting states. Motivated by potential applications in microfluidics and in the fabrication of self cleaning surfaces, we finally propose some guidelines to design robust superhydrophobic surfaces.Comment: 7 pages, 5 figure

    Interfacial motion in flexo- and order-electric switching between nematic filled states

    Full text link
    We consider a nematic liquid crystal, in coexistence with its isotropic phase, in contact with a substrate patterned with rectangular grooves. In such a system, the nematic phase may fill the grooves without the occurrence of complete wetting. There may exist multiple (meta)stable filled states, each characterised by the type of distortion (bend or splay) in each corner of the groove and by the shape of the nematic-isotropic interface, and additionally the plateaux that separate the grooves may be either dry or wet with a thin layer of nematic. Using numerical simulations, we analyse the dynamical response of the system to an externally- applied electric field, with the aim of identifying switching transitions between these filled states. We find that order-electric coupling between the fluid and the field provides a means of switching between states where the plateaux between grooves are dry and states where they are wet by a nematic layer, without affecting the configuration of the nematic within the groove. We find that flexoelectric coupling may change the nematic texture in the groove, provided that the flexoelectric coupling differentiates between the types of distortion at the corners of the substrate. We identify intermediate stages of the transitions, and the role played by the motion of the nematic-isotropic interface. We determine quantitatively the field magnitudes and orientations required to effect each type of transition.Comment: 14 pages, 12 fig

    FINE: Fisher Information Non-parametric Embedding

    Full text link
    We consider the problems of clustering, classification, and visualization of high-dimensional data when no straightforward Euclidean representation exists. Typically, these tasks are performed by first reducing the high-dimensional data to some lower dimensional Euclidean space, as many manifold learning methods have been developed for this task. In many practical problems however, the assumption of a Euclidean manifold cannot be justified. In these cases, a more appropriate assumption would be that the data lies on a statistical manifold, or a manifold of probability density functions (PDFs). In this paper we propose using the properties of information geometry in order to define similarities between data sets using the Fisher information metric. We will show this metric can be approximated using entirely non-parametric methods, as the parameterization of the manifold is generally unknown. Furthermore, by using multi-dimensional scaling methods, we are able to embed the corresponding PDFs into a low-dimensional Euclidean space. This not only allows for classification of the data, but also visualization of the manifold. As a whole, we refer to our framework as Fisher Information Non-parametric Embedding (FINE), and illustrate its uses on a variety of practical problems, including bio-medical applications and document classification.Comment: 30 pages, 21 figure

    Piercing an interface with a brush: collaborative stiffening

    Full text link
    The hairs of a painting brush withdrawn from a wetting liquid self-assemble into clumps whose sizes rely on a balance between liquid surface tension and hairs bending rigidity. Here we study the situation of an immersed carpet in an evaporating liquid bath : the free extremities of the hairs are forced to pierce the liquid interface. The compressive capillary force on the tip of flexible hairs leads to buckling and collapse. However we find that the spontaneous association of hairs into stronger bundles may allow them to resist capillary buckling. We explore in detail the different structures obtained and compare them with similar patterns observed in micro-structured surfaces such as carbon nanotubes "forests".Comment: 9 pages, 6 figure

    Dynamics of the spontaneous breakdown of superhydrophobicity

    Get PDF
    Drops deposited on rough and hydrophobic surfaces can stay suspended with gas pockets underneath the liquid, then showing very low hydrodynamic resistance. When this superhydrophobic state breaks down, the subsequent wetting process can show different dynamical properties. A suitable choice of the geometry can make the wetting front propagate in a stepwise manner leading to {\it square-shaped} wetted area: the front propagation is slow and the patterned surface fills by rows through a {\it zipping} mechanism. The multiple time scale scenario of this wetting process is experimentally characterized and compared to numerical simulations.Comment: 7 pages, 5 figure
    corecore