11,725 research outputs found

    On statistically stationary homogeneous shear turbulence

    Full text link
    A statistically stationary turbulence with a mean shear gradient is realized in a flow driven by suitable body forces. The flow domain is periodic in downstream and spanwise directions and bounded by stress free surfaces in the normal direction. Except for small layers near the surfaces the flow is homogeneous. The fluctuations in turbulent energy are less violent than in the simulations using remeshing, but the anisotropy on small scales as measured by the skewness of derivatives is similar and decays weakly with increasing Reynolds number.Comment: 4 pages, 5 figures (Figs. 3 and 4 as external JPG-Files

    Sub-Kolmogorov-Scale Fluctuations in Fluid Turbulence

    Full text link
    We relate the intermittent fluctuations of velocity gradients in turbulence to a whole range of local dissipation scales generalizing the picture of a single mean dissipation length. The statistical distribution of these local dissipation scales as a function of Reynolds number is determined in numerical simulations of forced homogeneous isotropic turbulence with a spectral resolution never applied before which exceeds the standard one by at least a factor of eight. The core of the scale distribution agrees well with a theoretical prediction. Increasing Reynolds number causes the generation of ever finer local dissipation scales. This is in line with a less steep decay of the large-wavenumber energy spectra in the dissipation range. The energy spectrum for the highest accessible Taylor microscale Reynolds number R_lambda=107 does not show a bottleneck.Comment: 8 pages, 5 figures (Figs. 1 and 3 in reduced quality

    Electron beam X-Y deflection system Final report

    Get PDF
    Design and fabrication of electron beam X-Y deflection system for retrofit on welding gun

    Asymmetry of temporal cross-correlations in turbulent shear flows

    Full text link
    We investigate spatial and temporal cross-correlations between streamwise and normal velocity components in three shear flows: a low-dimensional model for vortex-streak interactions, direct numerical simulations for a nearly homogeneous shear flow and experimental data for a turbulent boundary layer. A driving of streamwise streaks by streamwise vortices gives rise to a temporal asymmetry in the short time correlation. Close to the wall or the bounding surface in the free-slip situations, this asymmetry is identified. Further away from the boundaries the asymmetry becomes weaker and changes character, indicating the prevalence of other processes. The systematic variation of the asymmetry measure may be used as a complementary indicator to separate different layers in turbulent shear flows. The location of the extrema at different streamwise displacements can be used to read off the mean advection speed; it differs from the mean streamwise velocity because of asymmetries in the normal extension of the structures.Comment: 10 pages, 7 Postscript figures (low quality due to downsizing

    Optimal dense coding with mixed state entanglement

    Get PDF
    I investigate dense coding with a general mixed state on the Hilbert space CdCdC^{d}\otimes C^{d} shared between a sender and receiver. The following result is proved. When the sender prepares the signal states by mutually orthogonal unitary transformations with equal {\it a priori} probabilities, the capacity of dense coding is maximized. It is also proved that the optimal capacity of dense coding χ\chi ^{*} satisfies ER(ρ)χER(ρ)+log2dE_{R}(\rho)\leq \chi ^{*}\leq E_{R}(\rho )+\log_{2}d, where ER(ρ)E_{R}(\rho) is the relative entropy of entanglement of the shared entangled state.Comment: Revised. To appear in J. Phys. A: Math. Gen. (Special Issue: Quantum Information and Computation). LaTeX2e (iopart.cls), 8 pages, no figure

    Moist turbulent Rayleigh-Benard convection with Neumann and Dirichlet boundary conditions

    Full text link
    Turbulent Rayleigh-Benard convection with phase changes in an extended layer between two parallel impermeable planes is studied by means of three-dimensional direct numerical simulations for Rayleigh numbers between 10^4 and 1.5\times 10^7 and for Prandtl number Pr=0.7. Two different sets of boundary conditions of temperature and total water content are compared: imposed constant amplitudes which translate into Dirichlet boundary conditions for the scalar field fluctuations about the quiescent diffusive equilibrium and constant imposed flux boundary conditions that result in Neumann boundary conditions. Moist turbulent convection is in the conditionally unstable regime throughout this study for which unsaturated air parcels are stably and saturated air parcels unstably stratified. A direct comparison of both sets of boundary conditions with the same parameters requires to start the turbulence simulations out of differently saturated equilibrium states. Similar to dry Rayleigh-Benard convection the differences in the turbulent velocity fluctuations, the cloud cover and the convective buoyancy flux decrease across the layer with increasing Rayleigh number. At the highest Rayleigh numbers the system is found in a two-layer regime, a dry cloudless and stably stratified layer with low turbulence level below a fully saturated and cloudy turbulent one which equals classical Rayleigh-Benard convection layer. Both are separated by a strong inversion that gets increasingly narrower for growing Rayleigh number.Comment: 19 pages, 13 Postscript figures, Figures 10,11,12,13, in reduced qualit

    The quantum capacity is properly defined without encodings

    Get PDF
    We show that no source encoding is needed in the definition of the capacity of a quantum channel for carrying quantum information. This allows us to use the coherent information maximized over all sources and and block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure channel's capacity without relying on an unproven assumption as in an earlier paper.Comment: 19 pages revtex with two eps figures. Submitted to Phys. Rev. A. Replaced with revised and simplified version, and improved references, etc. Why can't the last line of the comments field end with a period using this web submission form
    corecore