19,826 research outputs found

    Evolutionary consequences of behavioral diversity

    Get PDF
    Iterated games provide a framework to describe social interactions among groups of individuals. Recent work stimulated by the discovery of "zero-determinant" strategies has rapidly expanded our ability to analyze such interactions. This body of work has primarily focused on games in which players face a simple binary choice, to "cooperate" or "defect". Real individuals, however, often exhibit behavioral diversity, varying their input to a social interaction both qualitatively and quantitatively. Here we explore how access to a greater diversity of behavioral choices impacts the evolution of social dynamics in finite populations. We show that, in public goods games, some two-choice strategies can nonetheless resist invasion by all possible multi-choice invaders, even while engaging in relatively little punishment. We also show that access to greater behavioral choice results in more "rugged " fitness landscapes, with populations able to stabilize cooperation at multiple levels of investment, such that choice facilitates cooperation when returns on investments are low, but hinders cooperation when returns on investments are high. Finally, we analyze iterated rock-paper-scissors games, whose non-transitive payoff structure means unilateral control is difficult and zero-determinant strategies do not exist in general. Despite this, we find that a large portion of multi-choice strategies can invade and resist invasion by strategies that lack behavioral diversity -- so that even well-mixed populations will tend to evolve behavioral diversity.Comment: 26 pages, 4 figure

    Application of pushbroom altimetry from space using large space antennas

    Get PDF
    The capabilities of multibeam altimetry are discussed and an interferometric multibeam technique for doing precision altimetry is described. The antenna feed horn arrangement and the resulting footprint lube pattern are illustrated. Plans for a shuttle multibeam altimetry mission are also discussed

    Evidence from satellite altimetry for small-scale convection in the mantle

    Get PDF
    Small scale convection can be defined as that part of the mantle circulation in which upwellings and downwellings can occur beneath the lithosphere within the interiors of plates, in contrast to the large scale flow associated with plate motions where upwellings and downwellings occur at ridges and trenches. The two scales of convection will interact so that the form of the small scale convection will depend on how it arises within the large scale flow. Observations based on GEOS-3 and SEASAT altimetry suggest that small scale convection occurs in at least two different ways

    Groundwater seepage landscapes from distant and local sources in experiments and on Mars

    Get PDF
    © 2014 Author(s). Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis

    Applications of active microwave imagery

    Get PDF
    The following topics were discussed in reference to active microwave applications: (1) Use of imaging radar to improve the data collection/analysis process; (2) Data collection tasks for radar that other systems will not perform; (3) Data reduction concepts; and (4) System and vehicle parameters: aircraft and spacecraft

    The evolutionary state of short-period magnetic white dwarf binaries

    Get PDF
    We present phase-resolved spectroscopy of two new short-period low accretion rate magnetic binaries, SDSS J125044.42+154957.3 (Porb= 86 min) and SDSS J151415.65+074446.5 (Porb= 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy distributions exhibit a large near-infrared excess, which we interpret as a combination of cyclotron emission and possibly a late-type companion star. No absorption features from the companion are seen in our optical spectra. We derive the orbital periods from a narrow, variable Hα emission line which we show to originate on the companion star. The high radial velocity amplitude measured in both systems suggests a high orbital inclination, but we find no evidence for eclipses in our data. The two new systems resemble the polar EF Eri in its prolonged low state and also SDSS J121209.31+013627.7, a known magnetic white dwarf plus possible brown dwarf binary, which was also recovered by our method

    Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes

    Full text link
    The rapid and efficient exchange of ions between porous electrodes and aqueous solutions is important in many applications, such as electrical energy storage by super-capacitors, water desalination and purification by capacitive deionization (or desalination), and capacitive extraction of renewable energy from a salinity difference. Here, we present a unified mean-field theory for capacitive charging and desalination by ideally polarizable porous electrodes (without Faradaic reactions or specific adsorption of ions) in the limit of thin double layers (compared to typical pore dimensions). We illustrate the theory in the case of a dilute, symmetric, binary electrolyte using the Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae are available for salt adsorption and capacitive charging of the diffuse part of the double layer. We solve the full GCS mean-field theory numerically for realistic parameters in capacitive deionization, and we derive reduced models for two limiting regimes with different time scales: (i) In the "super-capacitor regime" of small voltages and/or early times where the porous electrode acts like a transmission line, governed by a linear diffusion equation for the electrostatic potential, scaled to the RC time of a single pore. (ii) In the "desalination regime" of large voltages and long times, the porous electrode slowly adsorbs neutral salt, governed by coupled, nonlinear diffusion equations for the pore-averaged potential and salt concentration
    corecore