18,402 research outputs found

    Mesoscopic motion of atomic ions in magnetic fields

    Get PDF
    We introduce a semiclassical model for moving highly excited atomic ions in a magnetic field which allows us to describe the mixing of the Landau orbitals of the center of mass in terms of the electronic excitation and magnetic field. The extent of quantum energy flow in the ion is investigated and a crossover from localization to delocalization with increasing center of mass energy is detected. It turns out that our model of the moving ion in a magnetic field is closely connected to models for transport in disordered finite-size wires.Comment: 4 pages, 2 figures, subm. to Phys.Rev.A, Rap.Co

    Accuracy of genomic selection for reducing susceptibility to pendulous crop in turkey (Meleagris gallopavo)

    Get PDF
    Pendulous crop (PC) in the turkey occurs when the crop distends from its normal position, thereby preventing the movement of feed and water from the crop down into the digestive system. This condition negatively impacts the turkey industry at both production and welfare levels. In this study, we estimated the genetic parameters for PC incidence and its genetic correlation with five production traits. Additionally, we evaluated the prediction accuracy and bias of breeding values for the selection candidates using pedigree (BLUP) or pedigree-genomic (ssGBLUP) relationships among the animals. A total of 245,783 turkey records were made available by Hybrid Turkeys, Kitchener, Canada. Of these, 6,545 were affected with PC. In addition, the data included 9,634 records for breast meat yield (BMY); 5,592 records for feed conversion ratio (FCR) and residual feed intake (RFI) in males; 170,844 records for body weight (BW) and walking score (WS) between 18 and 20 weeks of age for males (71,012) and females (99,832), respectively. Among this population, 36,830 were genotyped using a 65K SNP Illumina Inc. chip. While all animals passed the quality control criteria, only 53,455 SNP markers were retained for subsequent analysis. Heritability for PC was estimated at 0.16 ± 0.00 and 0.17 ± 0.00 using BLUP and ssGBLUP, respectively. The incidence of PC was not genetically correlated with WS or FCR. Low unfavourable genetic correlations with BW (0.12 and 0.14), BMY (0.24 and 0.24) and RFI (-0.33 and -0.28) were obtained using BLUP and ssGBLUP, respectively. Using ssGBLUP showed higher prediction accuracy (0.51) for the breeding values for the selection candidates than the pedigree-based model (0.35). Whereas the bias of the prediction was slightly reduced with ssGBLUP (0.33 ± 0.05) than BLUP (0.30 ± 0.08), both models showed a regression coefficient lower than one, indicating inflation in the predictions. The results of this study suggest that PC is a heritable trait and selection for lower PC incidence rates is feasible. Although further investigation is necessary, selection for BW, BMY and RFI may increase PC incidence. Incorporating genomic information would lead to higher accuracy in predicting the genetic merit for selection candidates

    Precision measurements of large scale structure with future type Ia supernova surveys

    Full text link
    Type Ia supernovae are currently the best known standard candles at cosmological distances. In addition to providing a powerful probe of dark energy they are an ideal source of information about the peculiar velocity field of the local universe. Even with the very small number of supernovae presently available it has been possible to measure the dipole and quadrupole of the local velocity field out to z~0.025. With future continuous all-sky surveys like the LSST project the luminosity distances of tens of thousands of nearby supernovae will be measured accurately. This will allow for a determination of the local velocity structure of the universe as a function of redshift with unprecedented accuracy, provided the redshifts of the host galaxies are known. Using catalogues of mock surveys we estimate that future low redshift supernova surveys will be able to probe sigma-8 to a precision of roughly 5% at 95% C.L. This is comparable to the precision in future galaxy and weak lensing surveys and with a relatively modest observational effort it will provide a crucial cross-check on future measurements of the matter power spectrum.Comment: 18 pages, 9 figures, submitted to JCA

    Gating-by-tilt of mechanosensitive membrane channels

    Full text link
    We propose an alternative mechanism for the gating of biological membrane channels in response to membrane tension that involves a change in the slope of the membrane near the channel. Under biological membrane tensions we show that the energy difference between the closed (tilted) and open (untilted) states can far exceed kBT and is comparable to what is available under simple ilational gating. Recent experiments demonstrate that membrane leaflet asymmetries (spontaneous curvature) can strong effect the gating of some channels. Such a phenomenon would be more easy to explain under gating-by-tilt, given its novel intrinsic sensitivity to such asymmetry.Comment: 10 pages, 2 figure

    Exact Results for Hamiltonian Walks from the Solution of the Fully Packed Loop Model on the Honeycomb Lattice

    Full text link
    We derive the nested Bethe Ansatz solution of the fully packed O(nn) loop model on the honeycomb lattice. From this solution we derive the bulk free energy per site along with the central charge and geometric scaling dimensions describing the critical behaviour. In the n=0n=0 limit we obtain the exact compact exponents γ=1\gamma=1 and ν=1/2\nu=1/2 for Hamiltonian walks, along with the exact value κ2=33/4\kappa^2 = 3 \sqrt 3 /4 for the connective constant (entropy). Although having sets of scaling dimensions in common, our results indicate that Hamiltonian walks on the honeycomb and Manhattan lattices lie in different universality classes.Comment: 12 pages, RevTeX, 3 figures supplied on request, ANU preprint MRR-050-9

    Ultraviolet Imaging Polarimetry of the Large Magellanic Cloud. II. Models

    Get PDF
    Motivated by new sounding-rocket wide-field polarimetric images of the Large Magellanic Cloud, we have used a three-dimensional Monte Carlo radiation transfer code to investigate the escape of near-ultraviolet photons from young stellar associations embedded within a disk of dusty material (i.e. a galaxy). As photons propagate through the disk, they may be scattered or absorbed by dust. Scattered photons are polarized and tracked until they escape to be observed; absorbed photons heat the dust, which radiates isotropically in the far-infrared, where the galaxy is optically thin. The code produces four output images: near- UV and far-IR flux, and near-UV images in the linear Stokes parameters Q and U. From these images we construct simulated UV polarization maps of the LMC. We use these maps to place constraints on the star + dust geometry of the LMC and the optical properties of its dust grains. By tuning the model input parameters to produce maps that match the observed polarization maps, we derive information about the inclination of the LMC disk to the plane of the sky, and about the scattering phase function g. We compute a grid of models with i = 28 deg., 36 deg., and 45 deg., and g = 0.64, 0.70, 0.77, 0.83, and 0.90. The model which best reproduces the observed polarization maps has i = 36 +2/-5 degrees and g ~0.7. Because of the low signal-to-noise in the data, we cannot place firm constraints on the value of g. The highly inclined models do not match the observed centro-symmetric polarization patterns around bright OB associations, or the distribution of polarization values. Our models approximately reproduce the observed ultraviolet photopolarimetry of the western side of the LMC; however, the output images depend on many input parameters and are nonunique.Comment: Accepted to AJ. 20 pages, 7 figure

    Immune-responses to varicella-zoster in the aged

    Get PDF
    Skin test reactivity and in vitro lymphocyte stimulation responses to varicella-zoster (VZ) were examined in a large normal population ranging in age from 6 months to 93 years. Waning of cellular immunity, as examined by skin delayed hypersensitivity, began at age 40 years. Skin test responses to phytohemagglutinin, however, remained positive into the eighth decade of life. In vitro lymphocyte stimulation responses to VZ were usually positive (stimulation index ≥2.5) until age 60 years, after which time levels, as observed with nonimmune individuals, were often demonstrated. Antibody levels, as measured by fluorescent antibody to membrane antigen, remained positive into the ninth and tenth decades of life. This was especially so with a history of reactivation (zoster) VZ infections, while skin test and in vitro responses were rarely positive in those individuals. Thus cellular, as contrasted with humoral, immunity decreases with advancing age, which may account for a propensity to reactivation of VZ virus
    • …
    corecore