308 research outputs found

    Turbulent mixing at a stable density interface : the variation of the buoyancy flux–gradient relation

    Get PDF
    Experiments conducted on mixing across a stable density interface in a turbulent Taylor–Couette flow show, for the first time, experimental evidence of an increase in mixing efficiency at large Richardson numbers. With increasing buoyancy gradient the buoyancy flux first passes a maximum, then decreases and at large values of the buoyancy gradient the flux increases again. Thus, the curve of buoyancy flux versus buoyancy gradient tends to be N-shaped (rather than simply bell shaped), a behaviour suggested by the model of Balmforth et al. (J. Fluid Mech. vol. 428, 1998, p. 349). The increase in mixing efficiency at large Richardson numbers is attributed to a scale separation of the eddies active in mixing at the interface; when the buoyancy gradient is large mean kinetic energy is injected at scales much smaller than the eddy size fixed by the gap width, thus decreasing the eddy turnover time. Observations show that there is no noticeable change in interface thickness when the mixing efficiency increases; it is the mixing mechanism that changes. The curves of buoyancy flux versus buoyancy gradient also show a large variability for identical experimental conditions. These variations occur at time scales one to two orders of magnitude larger than the eddy turnover time scale

    Magnocellular and parvocellular influences on reflexive attention

    Get PDF
    AbstractPrevious studies have provided conflicting evidence regarding whether the magnocellular (M) or parvocellular (P) visual pathway is primarily responsible for triggering involuntary orienting. Here, we used event-related potentials (ERPs) to provide new evidence that both the M and P pathways can trigger attentional capture and bias visual processing at multiple levels. Specifically, cued-location targets elicited enhanced activity, relative to uncued-location targets, at both early sensory processing levels (indexed by the P1 component) and later higher-order processing stages (as indexed by the P300 component). Furthermore, the present results show these effects of attentional capture were not contingent on the feature congruency between the cue and expected target, providing evidence that this biasing of visual processing was not dependant on top-down expectations or within-pathway priming

    3-D Perturbations in Conformal Turbulence

    Full text link
    The effects of three-dimensional perturbations in two-dimensional turbulence are investigated, through a conformal field theory approach. We compute scaling exponents for the energy spectra of enstrophy and energy cascades, in a strong coupling limit, and compare them to the values found in recent experiments. The extension of unperturbed conformal turbulence to the present situation is performed by means of a simple physical picture in which the existence of small scale random forces is closely related to deviations of the exact two-dimensional fluid motion.Comment: Discussion of intermittency improved. Figure include

    Numbers in the Blind's “Eye”

    Get PDF
    Background: Although lacking visual experience with numerosities, recent evidence shows that the blind perform similarly to sighted persons on numerical comparison or parity judgement tasks. In particular, on tasks presented in the auditory modality, the blind surprisingly show the same effect that appears in sighted persons, demonstrating that numbers are represented through a spatial code, i.e. the Spatial-Numerical Association of Response Codes (SNARC) effect. But, if this is the case, how is this numerical spatial representation processed in the brain of the blind? Principal Findings: Here we report that, although blind and sighted people have similarly organized numerical representations, the attentional shifts generated by numbers have different electrophysiological correlates (sensorial N100 in the sighted and cognitive P300 in the blind). Conclusions: These results highlight possible differences in the use of spatial representations acquired through modalities other than vision in the blind population

    Infant Cognitive Scores Prediction With Multi-stream Attention-based Temporal Path Signature Features

    Get PDF
    There is stunning rapid development of human brains in the first year of life. Some studies have revealed the tight connection between cognition skills and cortical morphology in this period. Nonetheless, it is still a great challenge to predict cognitive scores using brain morphological features, given issues like small sample size and missing data in longitudinal studies. In this work, for the first time, we introduce the path signature method to explore hidden analytical and geometric properties of longitudinal cortical morphology features. A novel BrainPSNet is proposed with a differentiable temporal path signature layer to produce informative representations of different time points and various temporal granules. Further, a two-stream neural network is included to combine groups of raw features and path signature features for predicting the cognitive score. More importantly, considering different influences of each brain region on the cognitive function, we design a learning-based attention mask generator to automatically weight regions correspondingly. Experiments are conducted on an in-house longitudinal dataset. By comparing with several recent algorithms, the proposed method achieves the state-of-the-art performance. The relationship between morphological features and cognitive abilities is also analyzed

    Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL

    Get PDF
    T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. Here we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identify novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor/cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM toward a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.Peer reviewe

    Electrophysiological Evidence for Spatiotemporal Flexibility in the Ventrolateral Attention Network

    Get PDF
    Successful completion of many everyday tasks depends on interactions between voluntary attention, which acts to maintain current goals, and reflexive attention, which enables responding to unexpected events by interrupting the current focus of attention. Past studies, which have mostly examined each attentional mechanism in isolation, indicate that volitional and reflexive orienting depend on two functionally specialized cortical networks in the human brain. Here we investigated how the interplay between these two cortical networks affects sensory processing and the resulting overt behavior. By combining measurements of human performance and electrocortical recordings with a novel analytical technique for estimating spatiotemporal activity in the human cortex, we found that the subregions that comprise the reflexive ventrolateral attention network dissociate both spatially and temporally as a function of the nature of the sensory information and current task demands. Moreover, we found that together with the magnitude of the early sensory gain, the spatiotemporal neural dynamics accounted for the high amount of the variance in the behavioral data. Collectively these data support the conclusion that the ventrolateral attention network is recruited flexibly to support complex behaviors
    • …
    corecore