2,059 research outputs found
Does Practice-Based Teacher Preparation Increase Student Achievement? Early Evidence from the Boston Teacher Residency
The Boston Teacher Residency is an innovative practice-based preparation program in which candidates work alongside a mentor teacher for a year before becoming a teacher of record in Boston Public Schools. We find that BTR graduates are more racially diverse than other BPS novices, more likely to teach math and science, and more likely to remain teaching in the district through year five. Initially, BTR graduates for whom value-added performance data are available are no more effective at raising student test scores than other novice teachers in English language arts and less effective in math. The effectiveness of BTR graduates in math improves rapidly over time, however, such that by their fourth and fifth years they out-perform veteran teachers. Simulations of the program’s overall impact through retention and effectiveness suggest that it is likely to improve student achievement in the district only modestly over the long run.
Temperature dependent nucleation and propagation of domain walls in a sub-100 nm perpendicularly magnetized Co/Ni multilayer
We present a study of the temperature dependence of the switching fields in
Co/Ni-based perpendicularly magnetized spin-valves. While magnetization
reversal of all-perpendicular Co/Ni spin valves at ambient temperatures is
typically marked by a single sharp step change in resistance, low temperature
measurements can reveal a series of resistance steps, consistent with
non-uniform magnetization configurations. We propose a model that consists of
domain nucleation, propagation and annihilation to explain the temperature
dependence of the switching fields. Interestingly, low temperature (<30 K) step
changes in resistance that we associate with domain nucleation, have a bimodal
switching field and resistance step distribution, attributable to two competing
nucleation pathways.Comment: 5 pages, 4 figure
Temperature dependence of the switching field distributions in all-perpendicular spin-valve nanopillars
We present temperature dependent switching measurements of the Co/Ni
multilayered free element of 75 nm diameter spin-valve nanopillars. Angular
dependent hysteresis measurements as well as switching field measurements taken
at low temperature are in agreement with a model of thermal activation over a
perpendicular anisotropy barrier. However, the statistics of switching (mean
switching field and switching variance) from 20 K up to 400 K are in
disagreement with a N\'{e}el-Brown model that assumes a temperature independent
barrier height and anisotropy field. We introduce a modified N\'{e}el-Brown
model thats fit the experimental data in which we take a dependence
to the barrier height and the anisotropy field due to the temperature dependent
magnetization and anisotropy energy.Comment: 5 pages, 4 figure
Disorder-induced microscopic magnetic memory
Using coherent x-ray speckle metrology, we have measured the influence of
disorder on major loop return point memory (RPM) and complementary point memory
(CPM) for a series of perpendicular anisotropy Co/Pt multilayer films. In the
low disorder limit, the domain structures show no memory with field cycling--no
RPM and no CPM. With increasing disorder, we observe the onset and the
saturation of both the RPM and the CPM. These results provide the first direct
ensemble-sensitive experimental study of the effects of varying disorder on
microscopic magnetic memory and are compared against the predictions of
existing theories.Comment: 4 pages, 4 figures. Accepted for publication in Physical Review
Letters in Nov. 200
Synthesizing Skyrmion Molecules in Fe-Gd Thin Films
We show that properly engineered amorphous Fe-Gd alloy thin films with
perpendicular magnetic anisotropy exhibit room-temperature skyrmion molecules,
or a pair of like-polarity, opposite-helicity skyrmions. Magnetic mirror
symmetry planes present in the stripe phase, instead of chiral exchange,
determine the internal skyrmion structure and the net achirality of the
skyrmion phase. Our study shows that stripe domain engineering in amorphous
alloy thin films may enable the creation of skyrmion phases with
technologically desirable properties.Comment: 15 pages, 6 figures. Accepted for publication in Applied Physics
Letter
Far-UV FUSE spectroscopy of the OVI resonance doublet in Sand2 (WO)
We present Far-Ultraviolet Spectroscopic Explorer (FUSE) spectroscopy of Sand
2, a LMC WO-type Wolf-Rayet star, revealing the OVI resonance P Cygni doublet
at 1032-38A. These data are combined with HST/FOS ultraviolet and Mt Stromlo
2.3m optical spectroscopy, and analysed using a spherical, non-LTE,
line-blanketed code. Our study reveals exceptional stellar parameters:
T*=150,000K, v_inf=4100 km/s, log (L/Lo)=5.3, and Mdot=10^-5 Mo/yr if we adopt
a volume filling factor of 10%. Elemental abundances of C/He=0.7+-0.2 and
O/He=0.15(-0.05+0.10) by number qualitatively support previous recombination
line studies. We confirm that Sand 2 is more chemically enriched in carbon than
LMC WC stars, and is expected to undergo a supernova explosion within the next
50,000 yr.Comment: 17 pages, 4 figures, AASTeX preprint format. This paper will appear
in a special issue of ApJ Letters devoted to the first scientific results
from the FUSE missio
Recommended from our members
Posttraumatic Stress Disorder and Community Collective Efficacy following the 2004 Florida Hurricanes
There is a paucity of research investigating the relationship of community-level characteristics such as collective efficacy and posttraumatic stress following disasters. We examine the association of collective efficacy with probable posttraumatic stress disorder and posttraumatic stress disorder symptom severity in Florida public health workers (n = 2249) exposed to the 2004 hurricane season using a multilevel approach. Anonymous questionnaires were distributed electronically to all Florida Department of Health personnel nine months after the 2004 hurricane season. The collected data were used to assess posttraumatic stress disorder and collective efficacy measured at both the individual and zip code levels. The majority of participants were female (80.42%), and ages ranged from 20 to 78 years (median = 49 years); 73.91% were European American, 13.25% were African American, and 8.65% were Hispanic. Using multi-level analysis, our data indicate that higher community-level and individual-level collective efficacy were associated with a lower likelihood of having posttraumatic stress disorder (OR = 0.93, CI = 0.88–0.98; and OR = 0.94, CI = 0.92–0.97, respectively), even after adjusting for individual sociodemographic variables, community socioeconomic characteristic variables, individual injury/damage, and community storm damage. Higher levels of community-level collective efficacy and individual-level collective efficacy were also associated with significantly lower posttraumatic stress disorder symptom severity (b = −0.22, p<0.01; and b = −0.17, p<0.01, respectively), after adjusting for the same covariates. Lower rates of posttraumatic stress disorder are associated with communities with higher collective efficacy. Programs enhancing community collective efficacy may be an important part of prevention practices and possibly lead to a reduction in the rate of posttraumatic stress disorder post-disaster
Disorder-induced magnetic memory: Experiments and theories
Beautiful theories of magnetic hysteresis based on random microscopic
disorder have been developed over the past ten years. Our goal was to directly
compare these theories with precise experiments. We first developed and then
applied coherent x-ray speckle metrology to a series of thin multilayer
perpendicular magnetic materials. To directly observe the effects of disorder,
we deliberately introduced increasing degrees of disorder into our films. We
used coherent x-rays to generate highly speckled magnetic scattering patterns.
The apparently random arrangement of the speckles is due to the exact
configuration of the magnetic domains in the sample. In effect, each speckle
pattern acts as a unique fingerprint for the magnetic domain configuration.
Small changes in the domain structure change the speckles, and comparison of
the different speckle patterns provides a quantitative determination of how
much the domain structure has changed. How is the magnetic domain configuration
at one point on the major hysteresis loop related to the configurations at the
same point on the loop during subsequent cycles? The microscopic return-point
memory(RPM) is partial and imperfect in the disordered samples, and completely
absent when the disorder was not present. We found the complementary-point
memory(CPM) is also partial and imperfect in the disordered samples and
completely absent when the disorder was not present. We found that the RPM is
always a little larger than the CPM. We also studied the correlations between
the domains within a single ascending or descending loop. We developed new
theoretical models that do fit our experiments.Comment: 26 pages, 25 figures, Accepted by Physical Review B 01/25/0
- …