605 research outputs found

    Treatment Effects in the Presence of Unmeasured Confounding: Dealing With Observations in the Tails of the Propensity Score Distribution--A Simulation Study

    Get PDF
    Frailty, a poorly measured confounder in older patients, can promote treatment in some situations and discourage it in others. This can create unmeasured confounding and lead to nonuniform treatment effects over the propensity score (PS). The authors compared bias and mean squared error for various PS implementations under PS trimming, thereby excluding persons treated contrary to prediction. Cohort studies were simulated with a binary treatment T as a function of 8 covariates X. Two of the covariates were assumed to be unmeasured strong risk factors for the outcome and present in persons treated contrary to prediction. The outcome Y was simulated as a Poisson function of T and all X’s. In analyses based on measured covariates only, the range of PS's was trimmed asymmetrically according to the percentile of PS in treated patients at the lower end and in untreated patients at the upper end. PS trimming reduced bias due to unmeasured confounders and mean squared error in most scenarios assessed. Treatment effect estimates based on PS range restrictions do not correspond to a causal parameter but may be less biased by such unmeasured confounding. Increasing validity based on PS trimming may be a unique advantage of PS's over conventional outcome models

    Applying System Engineering to Pharmaceutical Safety

    Get PDF
    While engineering techniques are used in the development of medical devices and have been applied to individual healthcare processes, such as the use of checklists in surgery and ICUs, the application of system engineering techniques to larger healthcare systems is less common. System safety is the part of system engineering that uses modeling and analysis to identify hazards and to design the system to eliminate or control them. In this paper, we demonstrate how to apply a new, safety engineering static and dynamic modeling and analysis approach to healthcare systems. Pharmaceutical safety is used as the example in the paper, but the same approach is potentially applicable to other complex healthcare systems. System engineering techniques can be used in re-engineering the system as a whole to achieve the system goals, including both enhancing the safety of current drugs while, at the same time, encouraging the development of new drugs

    Performance of propensity score calibration - A simulation study

    Get PDF
    Confounding can be a major source of bias in nonexperimental research. The authors recently introduced propensity score calibration (PSC), which combines propensity scores and regression calibration to address confounding by variables unobserved in the main study by using variables observed in a validation study. Here, the authors assess the performance of PSC using simulations in settings with and without violation of the key assumption of PSC: that the error-prone propensity score estimated in the main study is a surrogate for the gold-standard propensity score (i.e., it contains no additional information on the outcome). The assumption can be assessed if data on the outcome are available in the validation study. If data are simulated allowing for surrogacy to be violated, results depend largely on the extent of violation. If surrogacy holds, PSC leads to bias reduction between 32% and 106% (>100% representing overcorrection). If surrogacy is violated, PSC can lead to an increase in bias. Surrogacy is violated when the direction of confounding of the exposure-disease association caused by the unobserved variable(s) differs from that of the confounding due to observed variables. When surrogacy holds, PSC is a useful approach to adjust for unmeasured confounding using validation data

    Propensity Score Calibration in the Absence of Surrogacy

    Get PDF
    Propensity score calibration (PSC) can be used to adjust for unmeasured confounders using a cross-sectional validation study that lacks information on the disease outcome (Y), under a strong surrogacy assumption. Using directed acyclic graphs and path analysis, the authors developed a formula to predict the presence and magnitude of the bias of PSC in the simplest setting of a binary exposure (T) and 1 confounder (X) that are observed in the main study and 1 confounder (C) that is observed in the validation study only. PSC bias is predicted on the basis of parameters that can be estimated from the data and a single unidentifiable parameter, the relative risk (RR) associated with C (RRCY). The authors simulated 1,000 cohort studies each with a Poisson-distributed outcome Y, varying parameter values over a wide range. When using the true parameter for RRCY, the formula predicts PSC bias almost perfectly in this simple setting (correlation with observed bias over 24 scenarios assessed: r = 0.998). The authors conclude that the bias from PSC observed in certain scenarios can be estimated from the imbalance in C between treated and untreated persons, after adjustment for X, in the validation study and assuming a range of plausible values for the unidentifiable RRCY

    A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods

    Get PDF
    Objective: Propensity score (PS) analyses attempt to control for confounding in nonexperimental studies by adjusting for the likelihood that a given patient is exposed. Such analyses have been proposed to address confounding by indication, but there is little empirical evidence that they achieve better control than conventional multivariate outcome modeling. Study Design and Methods: Using PubMed and Science Citation Index, we assessed the use of propensity scores over time and critically evaluated studies published through 2003. Results: Use of propensity scores increased from a total of 8 reports before 1998 to 71 in 2003. Most of the 177 published studies abstracted assessed medications (N = 60) or surgical interventions (N = 51), mainly in cardiology and cardiac surgery (N = 90). Whether PS methods or conventional outcome models were used to control for confounding had little effect on results in those studies in which such comparison was possible. Only 9 of 69 studies (13%) had an effect estimate that differed by more than 20% from that obtained with a conventional outcome model in all PS analyses presented. Conclusions: Publication of results based on propensity score methods has increased dramatically, but there is little evidence that these methods yield substantially different estimates compared with conventional multivariable methods

    Analytic strategies to adjust confounding using exposure propensity scores and disease risk scores: Nonsteroidal antiinflammatory drugs and short-term mortality in the elderly

    Get PDF
    Little is known about optimal application and behavior of exposure propensity scores (EPS) in small studies. In a cohort of 103,133 elderly Medicaid beneficiaries in New Jersey, the effect of nonsteroidal antiinflammatory drug use on 1-year all-cause mortality was assessed (1995-1997) based on the assumption that there is no protective effect and that the preponderance of any observed effect would be confounded. To study the comparative behavior of EPS, disease risk scores, and "conventional" disease models, the authors randomly resampled 1,000 subcohorts of 10,000, 1,000, and 500 persons. The number of variables was limited in disease models, but not EPS and disease risk scores. Estimated EPS were used to adjust for confounding by matching, inverse probability of treatment weighting, stratification, and modeling. The crude rate ratio of death was 0.68 for users of nonsteroidal antiinflammatory drugs. "Conventional" adjustment resulted in a rate ratio of 0.80 (95% confidence interval: 0.77, 0.84). The rate ratio closest to 1 (0.85) was achieved by inverse probability of treatment weighting (95% confidence interval: 0.82, 0.88). With decreasing study size, estimates remained further from the null value, which was most pronounced for inverse probability of treatment weighting (n = 500: rate ratio = 0.72, 95% confidence interval: 0.26, 1.68). In this setting, analytic strategies using EPS or disease risk scores were not generally superior to "conventional" models. Various ways to use EPS and disease risk scores behaved differently with smaller study size

    Systematic review of economic evaluations and cost analyses of guideline implementation strategies

    Get PDF
    Objectives To appraise the quality of economic studies undertaken as part of evaluations of guideline implementation strategies; determine their resources use; and recommend methods to improve future studies. Methods Systematic review of economic studies undertaken alongside robust study designs of clinical guideline implementation strategies published (1966-1998). Studies assessed against the BMJ economic evaluations guidelines for each stage of the guideline process (guideline development, implementation and treatment). Results 235 studies were identified, 63 reported some information on cost. Only 3 studies provided evidence that their guideline was effective and efficient. 38 reported the treatment costs only, 12 implementation and treatment costs, 11 implementation costs alone, and two guideline development, implementation and treatment costs. No study gave reasonably complete information on costs. Conclusions Very few satisfactory economic evaluations of guideline implementation strategies have been performed. Current evaluations have numerous methodological defects and rarely consider all relevant costs and benefits. Future evaluations should focus on evaluating the implementation of evidence based guidelines. Keywords: Cost-effectiveness analysis, physician (or health care professional) behaviour, practice guidelines, quality improvement, systematic review.Peer reviewedAuthor versio
    corecore