149 research outputs found

    Detailed Examination of TRPM7 Channel Mg2+ Dependence

    Get PDF

    NSAIDs Naproxen, Ibuprofen, Salicylate, and Aspirin Inhibit TRPM7 Channels by Cytosolic Acidification

    Get PDF
    Non-steroidal anti-inflammatory drugs (NSAIDs) are used for relieving pain and inflammation accompanying numerous disease states. The primary therapeutic mechanism of these widely used drugs is the inhibition of cyclooxygenase 1 and 2 (COX1, 2) enzymes that catalyze the conversion of arachidonic acid into prostaglandins. At higher doses, NSAIDs are used for prevention of certain types of cancer and as experimental treatments for Alzheimer’s disease. In the immune system, various NSAIDs have been reported to influence neutrophil function and lymphocyte proliferation, and affect ion channels and cellular calcium homeostasis. Transient receptor potential melastatin 7 (TRPM7) cation channels are highly expressed in T lymphocytes and are inhibited by Mg2+, acidic pH, and polyamines. Here, we report a novel effect of naproxen, ibuprofen, salicylate, and acetylsalicylate on TRPM7. At concentrations of 3–30 mM, they reversibly inhibited TRPM7 channel currents. By measuring intracellular pH with the ratiometric indicator BCECF, we found that at 300 μM to 30 mM, these NSAIDs reversibly acidified the cytoplasm in a concentration-dependent manner, and propose that TRPM7 channel inhibition is a consequence of cytosolic acidification, rather than direct. NSAID inhibition of TRPM7 channels was slow, voltage-independent, and displayed use-dependence, increasing in potency upon repeated drug applications. The extent of channel inhibition by salicylate strongly depended on cellular PI(4,5)P2 levels, as revealed when this phospholipid was depleted with voltage-sensitive lipid phosphatase (VSP). Salicylate inhibited heterologously expressed wildtype TRPM7 channels but not the S1107R variant, which is insensitive to cytosolic pH, Mg2+, and PI(4,5)P2 depletion. NSAID-induced acidification was also observed in Schneider 2 cells from Drosophila, an organism that lacks orthologous COX genes, suggesting that this effect is unrelated to COX enzyme activity. A 24-h exposure to 300 μM–10 mM naproxen resulted in a concentration-dependent reduction in cell viability. In addition to TRPM7, the described NSAID effect would be expected to apply to other ion channels and transporters sensitive to intracellular pH

    Charge Screening by Internal pH and Polyvalent Cations as a Mechanism for Activation, Inhibition, and Rundown of TRPM7/MIC Channels

    Get PDF
    The Mg2+-inhibited cation (MIC) current, believed to represent activity of TRPM7 channels, is found in lymphocytes and mast cells, cardiac and smooth muscle, and several other eukaryotic cell types. MIC current is activated during whole-cell dialysis with divalent-free internal solutions. Millimolar concentrations of intracellular Mg2+ (or other divalent metal cations) inhibit the channels in a voltage-independent manner. The nature of divalent inhibition and the mechanism of channel activation in an intact cell remain unknown. We show that the polyamines (spermine, spermidine, and putrescine) inhibit the MIC current, also in a voltage-independent manner, with a potency that parallels the number of charges. Neomycin and poly-lysine also potently inhibited MIC current in the absence of Mg2+. These same positively charged ions inhibited IRK1 current in parallel with MIC current, suggesting that they probably act by screening the head group phosphates on PIP2 and other membrane phospholipids. In agreement with this hypothesis, internal protons also inhibited MIC current. By contrast, tetramethylammonium, tetraethylammonium, and hexamethonium produced voltage-dependent block but no inhibition. We show that inhibition by internal polyvalent cations can be relieved by alkalinizing the cytosol using externally applied ammonium or by increasing pH in inside-out patches. Furthermore, in perforated-patch and cell-attached recordings, when intracellular Mg2+ is not depleted, endogenous MIC or recombinant TRPM7 currents are activated by cytosolic alkalinization and inhibited by acidification; and they can be reactivated by PIP2 following rundown in inside-out patches. We propose that MIC (TRPM7) channels are regulated by a charge screening mechanism and may function as sensors of intracellular pH

    STIM1, an essential and conserved component of store-operated Ca2+ channel function

    Get PDF
    Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels

    Distinct Properties of CRAC and MIC Channels in RBL Cells

    No full text
    corecore