1,569 research outputs found
The Matrix Element Method and QCD Radiation
The matrix element method (MEM) has been extensively used for the analysis of
top-quark and W-boson physics at the Tevatron, but in general without dedicated
treatment of initial state QCD radiation. At the LHC, the increased center of
mass energy leads to a significant increase in the amount of QCD radiation,
which makes it mandatory to carefully account for its effects. We here present
several methods for inclusion of QCD radiation effects in the MEM, and apply
them to mass determination in the presence of multiple invisible particles in
the final state. We demonstrate significantly improved results compared to the
standard treatment.Comment: 15 pp; v2: references and some clarifications added; v3: discussion
of NLO effects, version published in PR
Quark asymmetries in the proton from a model for parton densities
Based on quantum fluctuations in momentum and of the proton into meson-baryon
pairs, we develop a physical model for the non-perturbative x-shape of parton
density functions in the proton. The model describes the proton structure
function and gives a natural explanation of observed quark asymmetries, such as
the difference between the anti-up and anti-down sea quark distributions and
between the up and down valence distributions. An asymmetry in the momentum
distribution of strange and anti-strange quarks in the nucleon is found to
reduce the NuTeV anomaly to a level which does not give a significant
indication of physics beyond the standard model.Comment: 27 pages, 11 figures. Updated with extended discussio
Composite Higgs to two Photons and Gluons
We introduce a simple framework to estimate the composite Higgs boson
coupling to two-photon in Technicolor extensions of the standard model. The
same framework allows us to predict the composite Higgs to two-gluon process.
We compare the decay rates with the standard model ones and show that the
corrections are typically of order one. We suggest, therefore, that the
two-photon decay process can be efficiently used to disentangle a light
composite Higgs from the standard model one. We also show that the Tevatron
results for the gluon-gluon fusion production of the Higgs either exclude the
techniquarks to carry color charges to the 95% confidence level, if the
composite Higgs is light, or that the latter must be heavier than around 200
GeV.Comment: RevTex 7 pages, 6 figure
Strange quark asymmetry in the nucleon and the NuTeV anomaly
The NuTeV anomaly of a non-universal value of the fundamental parameter
sin^2\theta_W in the electroweak theory has been interpreted as an indication
for new physics beyond the Standard Model. However, the observed quantity
depends on a possible asymmetry in the momentum distributions of strange quarks
and antiquarks in the nucleon. This asymmetry occurs naturally in a
phenomenologically successful physical model for such parton distributions,
which reduces the NuTeV result to only about two standard deviations from the
Standard Model.Comment: 4 pages, 5 figures, RevTex4. Updated with new references and extended
discussion. v.3: Minor corrections mad
ATLAS Z Excess in Minimal Supersymmetric Standard Model
Recently the ATLAS collaboration reported a 3 sigma excess in the search for
the events containing a dilepton pair from a Z boson and large missing
transverse energy. Although the excess is not sufficiently significant yet, it
is quite tempting to explain this excess by a well-motivated model beyond the
standard model. In this paper we study a possibility of the minimal
supersymmetric standard model (MSSM) for this excess. Especially, we focus on
the MSSM spectrum where the sfermions are heavier than the gauginos and
Higgsinos. We show that the excess can be explained by the reasonable MSSM mass
spectrum.Comment: 13 pages, 7 figures; published versio
Supersymmetry and Generic BSM Models in PYTHIA 8
We describe the implementation of supersymmetric models in PYTHIA 8,
including production and decay of superparticles and allowing for violation of
flavour, CP, and R-parity. We also present a framework for importing generic
new-physics matrix elements into PYTHIA 8, in a way suitable for use with
automated tools. We emphasize that this possibility should not be viewed as the
only way to implement new-physics models in PYTHIA 8, but merely as an
additional possibility on top of the already existing ones. Finally we address
parton showers in exotic colour topologies, in particular ones involving colour
epsilon tensors and colour sextets.Comment: 20 page
Setting limits on Effective Field Theories: the case of Dark Matter
The usage of Effective Field Theories (EFT) for LHC new physics searches is
receiving increasing attention. It is thus important to clarify all the aspects
related with the applicability of the EFT formalism in the LHC environment,
where the large available energy can produce reactions that overcome the
maximal range of validity, i.e. the cutoff, of the theory. We show that this
does forbid to set rigorous limits on the EFT parameter space through a
modified version of the ordinary binned likelihood hypothesis test, which we
design and validate. Our limit-setting strategy can be carried on in its
full-fledged form by the LHC experimental collaborations, or performed
externally to the collaborations, through the Simplified Likelihood approach,
by relying on certain approximations. We apply it to the recent CMS mono-jet
analysis and derive limits on a Dark Matter (DM) EFT model. DM is selected as a
case study because the limited reach on the DM production EFT Wilson
coefficient and the structure of the theory suggests that the cutoff might be
dangerously low, well within the LHC reach. However our strategy can also be
applied to EFT's parametrising the indirect effects of heavy new physics in the
Electroweak and Higgs sectors
New Developments in MadGraph/MadEvent
We here present some recent developments of MadGraph/MadEvent since the
latest published version, 4.0. These developments include: Jet matching with
Pythia parton showers for both Standard Model and Beyond the Standard Model
processes, decay chain functionality, decay width calculation and decay
simulation, process generation for the Grid, a package for calculation of
quarkonium amplitudes, calculation of Matrix Element weights for experimental
events, automatic dipole subtraction for next-to-leading order calculations,
and an interface to FeynRules, a package for automatic calculation of Feynman
rules and model files from the Lagrangian of any New Physics model.Comment: 6 pages, 3 figures. Plenary talk given at SUSY08, Seoul, South Korea,
June 2008. To appear in the proceeding
Light gravitino production in association with gluinos at the LHC
We study the jets plus missing energy signature at the LHC in a scenario
where the gravitino is very light and the gluino is the next-to-lightest
supersymmetric particle and promptly decays into a gluon and a gravitino. We
consider both associated gravitino production with a gluino and gluino pair
production. By merging matrix elements with parton showers, we generate
inclusive signal and background samples and show how information on the gluino
and gravitino masses can be obtained by simple final state observables.Comment: 18 pages, 8 figures, 1 table; v2: typos corrected, version to appear
in JHE
Improving NLO-parton shower matched simulations with higher order matrix elements
In recent times the algorithms for the simulation of hadronic collisions have
been subject to two substantial improvements: the inclusion, within parton
showering, of exact higher order tree level matrix elements (MEPS) and,
separately, next-to-leading order corrections (NLOPS). In this work we examine
the key criteria to be met in merging the two approaches in such a way that the
accuracy of both is preserved, in the framework of the POWHEG approach to
NLOPS. We then ask to what extent these requirements may be fulfilled using
existing simulations, without modifications. The result of this study is a
pragmatic proposal for merging MEPS and NLOPS events to yield much improved
MENLOPS event samples. We apply this method to W boson and top quark pair
production. In both cases results for distributions within the remit of the NLO
calculations exhibit no discernible changes with respect to the pure NLOPS
prediction; conversely, those sensitive to the distribution of multiple hard
jets assume, exactly, the form of the corresponding MEPS results.Comment: 38 pages, 17 figures. v2: added citations and brief discussion of
related works, MENLOPS prescription localized in a subsection. v3: cited 4
more MEPS works in introduction
- …
