19,923 research outputs found
Segregation in a fluidized binary granular mixture: Competition between buoyancy and geometric forces
Starting from the hydrodynamic equations of binary granular mixtures, we
derive an evolution equation for the relative velocity of the intruders, which
is shown to be coupled to the inertia of the smaller particles. The onset of
Brazil-nut segregation is explained as a competition between the buoyancy and
geometric forces: the Archimedean buoyancy force, a buoyancy force due to the
difference between the energies of two granular species, and two geometric
forces, one compressive and the other-one tensile in nature, due to the
size-difference. We show that inelastic dissipation strongly affects the phase
diagram of the Brazil nut phenomenon and our model is able to explain the
experimental results of Breu et al. (PRL, 2003, vol. 90, p. 01402).Comment: 5 pages, 2 figure
Identity and ethnicity in /t/ in Glasgow-Pakistani high-school girls
This paper presents an acoustic phonetic analysis
of Glasgow Asian syllable-initial /t/, in speech data
collected from Pakistani-Muslim girls in a
Glasgow high school after a long-term participant
observation into their shared and differing social
practices. The results show differences in spectral
energy and shape according to following phonetic
segment, and to membership in two contrasting
Communities of Practice, more conservative girls
maintaining traditional cultural practices, and more
rebellious girls whose behaviour challenges such
norms. The findings demonstrate that ethnicity is
integrally linked with locally-salient identity, and
hence that fine phonetic variation which indexes
ethnicity is in fact indexical of local ethnic identity
Application of artificial neural networks in nonlinear analysis of trusses
A method is developed to incorporate neural network model based upon the Backpropagation algorithm for material response into nonlinear elastic truss analysis using the initial stiffness method. Different network configurations are developed to assess the accuracy of neural network modeling of nonlinear material response. In addition to this, a scheme based upon linear interpolation for material data, is also implemented for comparison purposes. It is found that neural network approach can yield very accurate results if used with care. For the type of problems under consideration, it offers a viable alternative to other material modeling methods
Effect of crack curvature on stress intensity factors for ASTM standard compact tension specimens
The stress intensity factors (SIF) are calculated using the method of lines for the compact tension specimen in tensile and shear loading for curved crack fronts. For the purely elastic case, it was found that as the crack front curvature increases, the SIF value at the center of the specimen decreases while increasing at the surface. For the higher values of crack front curvatures, the maximum value of the SIF occurs at an interior point located adjacent to the surface. A thickness average SIF was computed for parabolically applied shear loading. These results were used to assess the requirements of ASTM standards E399-71 and E399-81 on the shape of crack fronts. The SIF is assumed to reflect the average stress environment near the crack edge
SET based experiments for HTSC materials: II
The cuprates seem to exhibit statistics, dimensionality and phase transitions
in novel ways. The nature of excitations
[i.e. quasiparticle or collective], spin-charge separation, stripes [static
and dynamics], inhomogeneities, psuedogap, effect of impurity dopings [e.g. Zn,
Ni] and any other phenomenon in these materials must be consistently
understood. In this note we further discuss our original suggestion of using
Single Electron Tunneling Transistor
[SET] based experiments to understand the role of charge dynamics in these
systems. Assuming that SET operates as an efficient charge detection system we
can expect to understand the underlying physics of charge transport and charge
fluctuations in these materials for a range of doping. Experiments such as
these can be classed in a general sense as mesoscopic and nano characterization
of cuprates and related materials. In principle such experiments can show if
electron is fractionalized in cuprates as indicated by ARPES data. In contrast
to flux trapping experiments SET based experiments are more direct in providing
evidence about spin-charge separation. In addition a detailed picture of nano
charge dynamics in cuprates may be obtained.Comment: 10 pages revtex plus four figures; ICMAT 2001 Conference Symposium P:
P10-0
Coverage and Connectivity in Three-Dimensional Networks
Most wireless terrestrial networks are designed based on the assumption that
the nodes are deployed on a two-dimensional (2D) plane. However, this 2D
assumption is not valid in underwater, atmospheric, or space communications. In
fact, recent interest in underwater acoustic ad hoc and sensor networks hints
at the need to understand how to design networks in 3D. Unfortunately, the
design of 3D networks is surprisingly more difficult than the design of 2D
networks. For example, proofs of Kelvin's conjecture and Kepler's conjecture
required centuries of research to achieve breakthroughs, whereas their 2D
counterparts are trivial to solve. In this paper, we consider the coverage and
connectivity issues of 3D networks, where the goal is to find a node placement
strategy with 100% sensing coverage of a 3D space, while minimizing the number
of nodes required for surveillance. Our results indicate that the use of the
Voronoi tessellation of 3D space to create truncated octahedral cells results
in the best strategy. In this truncated octahedron placement strategy, the
transmission range must be at least 1.7889 times the sensing range in order to
maintain connectivity among nodes. If the transmission range is between 1.4142
and 1.7889 times the sensing range, then a hexagonal prism placement strategy
or a rhombic dodecahedron placement strategy should be used. Although the
required number of nodes in the hexagonal prism and the rhombic dodecahedron
placement strategies is the same, this number is 43.25% higher than the number
of nodes required by the truncated octahedron placement strategy. We verify by
simulation that our placement strategies indeed guarantee ubiquitous coverage.
We believe that our approach and our results presented in this paper could be
used for extending the processes of 2D network design to 3D networks.Comment: To appear in ACM Mobicom 200
Dead cone due to parton virtuality
A general expression for the dead cone of gluons radiated by virtual partons
has been derived. The conventional dead cone for massive on-shell quarks and
the dead cone for the massless virtual partons have been obtained by using
different limits of the general expression. Radiative suppression due to the
virtuality of initial parton jets in Heavy-Ion Collisions (HIC) has been
discussed. It is observed that the suppression caused by the high virtuality is
overwhelmingly large as compared to that on account of conventional dead-cone
of heavy quarks. The dead cone due to virtuality may play a crucial role in
explaining the observed similar suppression patterns of light and heavy quarks
jets in heavy ion collisions at Relativistic Heavy Ion Collider (RHIC)
- …