243 research outputs found

    Imaging Soft Materials with Scanning Tunneling Microscopy

    Get PDF
    By modifying freeze-fracture replication, a standard electron microscopy fixation technique, for use with the scanning tunneling microscope (STM), a variety of soft, non-conductive biomaterials can be imaged at high resolution in three dimensions. Metal replicas make near ideal samples for STM in comparison to the original biological materials. Modifications include a 0.1 μm backing layer of silver and mounting the replicas on a fine-mesh silver filters to enhance the rigidity of the metal replica. This is required unless STM imaging is carried out in vacuum; otherwise, a liquid film of contamination physically connects the STM tip with the sample. This mechanical coupling leads to exaggerated height measurements; the enhanced rigidity of the thicker replica eliminates much of the height amplification. Further improvement was obtained by imaging in a dry nitrogen atmosphere. Calibration and reproducibility were tested with replicas of well characterized bilayers of cadmium arachidate on mica that provide regular 5.5 nm steps. We have used the STM/replica technique to examine the ripple shape and amplitude in the P/J. phase of dimyristoylpbospbatidyl-choline (DMPC) in water. STM images were analyzed using a cross-correlation averaging program to eliminate the effects of noise and the finite size and shapes of the metal grains that make up the replica. The correlation averaging allowed us to develop a composite ripple profile averaged over hundreds of individual ripples and different samples. The STM/replica technique is sufficiently general that it can be used to examine a variety of hydrated lipid and protein samples at a lateral resolution of about 1 nm and a vertical resolution of about 0.3 run

    Characteristic Energy of the Coulomb Interactions and the Pileup of States

    Full text link
    Tunneling data on La1.28Sr1.72Mn2O7\mathrm{La_{1.28}Sr_{1.72}Mn_2O_7} crystals confirm Coulomb interaction effects through the E\sqrt{\mathrm{E}} dependence of the density of states. Importantly, the data and analysis at high energy, E, show a pileup of states: most of the states removed from near the Fermi level are found between ~40 and 130 meV, from which we infer the possibility of universal behavior. The agreement of our tunneling data with recent photoemission results further confirms our analysis.Comment: 4 pages, 4 figures, submitted to PR

    Local Strong Coupling Pairing in DD-Wave Superconductor with Inhomogeneous Bosonic Modes

    Full text link
    Recent local tunneling data indicate strong nanoscale inhomogeneity of superconducting gap in high temperature superconductors. Strong local nanoscale inhomogeneity in the bosonic scattering mode has also been observed in the same samples. We argue that these two inhomogeneities directly related to each other. To address local boson scattering effects, we develop a local strong coupling model of superconducting pairing in a coarse grained superconducting state. Each patch is characterized by local coupling to the bosonic mode as well as by local mode energy. We find that local gap value on each patch grows with the local strength of electron-boson interaction. At the same time local gap value decreases with the local boson mode energy, an observation consistent with the tunneling experiments. We argue that features in the tunneling spectrum due to boson scattering are consistent with experimentally observed spectra. We also address the 16O^{16}O to 18O^{18}O isotope substitution. Since both coupling constant and boson energy could change upon isotope substitution, we prove that interplay between these two effects can produce results that are very different from conventional BCS model.Comment: 16 pages latex file, 15 eps and ps fig files. See more details at http://theory.lanl.go

    A phase of liposomes with entangled tubular vesicles

    Get PDF
    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L4 phase of spherical vesicles and a bulk L alpha phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure

    Quantum-critical superconductivity in underdoped cuprates

    Full text link
    We argue that the pseudogap phase may be an attribute of the non-BCS pairing of quantum-critical, diffusive fermions near the antiferromagnetic quantum critical point. We derive and solve a set of three coupled Eliashberg-type equations for spin-mediated pairing and show that in some TT range below the pairing instability, there is no feedback from superconductivity on fermionic excitations, and fermions remain diffusive despite of the pairing. We conject that in this regime, fluctuations of the pairing gap destroy the superconducting condensate but preserve the leading edge gap in the fermionic spectral function.Comment: 5 pages, 3 figure

    Commissioning of Dedicated Furnace for Nb3Sn Coatings of 2.6 GHz Single Cell Cavities

    Full text link
    We present the results of commissioning a dedicated furnace for Nb3Sn coatings of 2.6 GHz single cell cavities. Nb3Sn is a desired coating due to its high critical temperature and smaller surface resistance compared to bulk Nb. Usage of Nb3Sn coated cavities will greatly reduce operating costs due to decreased dependance on cryo cooling. Tin is deposited by use of a tin chloride nucleation agent and tin vapor diffusion. Analysis of the resultant coating was performed using SEM/EDS to verify successful formation of Nb3Sn. Witness samples in line of sight of the source were used in order to understand the coating efficacy.Comment: 21st Intl Conf Radio Frequency Superconductivity (SRF 2023

    Spectroscopic Evidence for Multiple Order Parameter Components in the Heavy Fermion Superconductor CeCoIn_5

    Full text link
    Point-contact spectroscopy was performed on single crystals of the heavy-fermion superconductor CeCoIn_5 between 150 mK and 2.5 K. A pulsed measurement technique ensured minimal Joule heating over a wide voltage range. The spectra show Andreev-reflection characteristics with multiple structures which depend on junction impedance. Spectral analysis using the generalized Blonder-Tinkham-Klapwijk formalism for d-wave pairing revealed two coexisting order parameter components, with amplitudes Delta_1 = 0.95 +/- 0.15 meV and Delta_2 = 2.4 +/- 0.3 meV, which evolve differently with temperature. Our observations indicate a highly unconventional pairing mechanism, possibly involving multiple bands.Comment: 4 pages, 3 figure
    • …
    corecore