2,252 research outputs found

    Dissipative particle dynamics: the equilibrium for finite time steps

    Full text link
    Dissipative particle dynamics (DPD) is a relatively new technique which has proved successful in the simulation of complex fluids. We caution that for the equilibrium achieved by the DPD simulation of a simple fluid the temperature depends strongly on the time step. An analytic expression for the dependence is obtained and shown to agree well with simulation results.Comment: 5 pages, LaTeX, 1 Postscript figure, submitted to Europhys.Letts., Algebraic corrections made to final resul

    Effect of topology on dynamics of knots in polymers under tension

    Full text link
    We use computer simulations to compare the dynamical behaviour of torus and even-twist knots in polymers under tension. The knots diffuse through a mechanism similar to reptation. Their friction coefficients grow linearly with average knot length for both knot types. For similar complexity, however, the torus knots diffuse faster than the even twist knots. The knot-length auto-correlation function exhibits a slow relaxation time that can be linked to a breathing mode. Its timescale depends on knot type, being typically longer for torus than for even-twist knots. These differences in dynamical behaviour are interpreted in terms of topological features of the knots.Comment: 6 pages, 8 figure

    Complex dynamics of knotted filaments in shear flow

    Full text link
    Coarse-grained simulations are used to demonstrate that knotted filaments in shear flow at zero Reynolds number exhibit remarkably rich dynamic behaviour. For stiff filaments that are weakly deformed by the shear forces, the knotted filaments rotate like rigid objects in the flow. But away from this regime the interplay between between shear forces and the flexibility of the filament leads to intricate regular and chaotic modes of motion that can be divided into distinct families. The set of accessible mode families depends to first order on a dimensionless number that relates the filament length, the elastic modulus, the friction per unit length and the shear rate.Comment: 6 pages, 6 figure

    Dynamics of sliding drops on superhydrophobic surfaces

    Full text link
    We use a free energy lattice Boltzmann approach to investigate numerically the dynamics of drops moving across superhydrophobic surfaces. The surfaces comprise a regular array of posts small compared to the drop size. For drops suspended on the posts the velocity increases as the number of posts decreases. We show that this is because the velocity is primarily determined by the contact angle which, in turn, depends on the area covered by posts. Collapsed drops, which fill the interstices between the posts, behave in a very different way. The posts now impede the drop behaviour and the velocity falls as their density increases.Comment: 7 pages, 4 figures, accepted for publication in Europhys. Let

    Jetting Micron-Scale Droplets onto Chemically Heterogeneous Surfaces

    Full text link
    We report experiments investigating the behaviour of micron-scale fluid droplets jetted onto surfaces patterned with lyophobic and lyophilic stripes. The final droplet shape depends on the droplet size relative to that of the stripes. In particular when the droplet radius is of the same order as the stripe width, the final shape is determined by the dynamic evolution of the drop and shows a sensitive dependence on the initial droplet position and velocity. Numerical solutions of the dynamical equations of motion of the drop provide a close quantitative match to the experimental results. This proves helpful in interpreting the data and allows for accurate prediction of fluid droplet behaviour for a wide range of surfaces.Comment: 14 pages, accepted for publication in Langmui

    Rheology of cholesteric blue phases

    Full text link
    Blue phases of cholesteric liquid crystals offer a spectacular example of naturally occurring disclination line networks. Here we numerically solve the hydrodynamic equations of motion to investigate the response of three types of blue phases to an imposed Poiseuille flow. We show that shear forces bend and twist and can unzip the disclination lines. Under gentle forcing the network opposes the flow and the apparent viscosity is significantly higher than that of an isotropic liquid. With increased forcing we find strong shear thinning corresponding to the disruption of the defect network. As the viscosity starts to drop, the imposed flow sets the network into motion. Disclinations break-up and re-form with their neighbours in the flow direction. This gives rise to oscillations in the time-dependent measurement of the average stress.Comment: 4 pages, 4 figure

    Control of drop positioning using chemical patterning

    Full text link
    We explore how chemical patterning on surfaces can be used to control drop wetting. Both numerical and experimental results are presented to show how the dynamic pathway and equilibrium shape of the drops are altered by a hydrophobic grid. The grid proves a successful way of confining drops and we show that it can be used to alleviate {\it mottle}, a degradation in image quality which results from uneven drop coalescence due to randomness in the positions of the drops within the jetted array.Comment: 3 pages, 4 figure

    Polarized 3 parton production in inclusive DIS at small x

    Get PDF
    Azimuthal angular correlations between produced hadrons/jets in high energy collisions are a sensitive probe of the dynamics of QCD at small x. Here we derive the triple differential cross section for inclusive production of 3 polarized partons in DIS at small x using the spinor helicity formalism. The target proton or nucleus is described using the Color Glass Condensate (CGC) formalism. The resulting expressions are used to study azimuthal angular correlations between produced partons in order to probe the gluon structure of the target hadron or nucleus. Our analytic expressions can also be used to calculate the real part of the Next to Leading Order (NLO) corrections to di-hadron production in DIS by integrating out one of the three final state partons.Comment: 5 pages, 6 figures; version accepted for publication in Physics Letters
    corecore