3,228 research outputs found

    Impulsive Heating of Solar Flare Ribbons Above 10 MK

    Get PDF
    The chromospheric response to the input of flare energy is marked by extended extreme ultraviolet (EUV) ribbons and hard X-ray (HXR) footpoints. These are usually explained as the result of heating and bremsstrahlung emission from accelerated electrons colliding in the dense chromospheric plasma. We present evidence of impulsive heating of flare ribbons above 10 MK in a two-ribbon flare. We analyse the impulsive phase of SOL2013-11-09T06:38, a C2.6 class event using data from Atmospheric Imaging Assembly (AIA) on board of Solar Dynamics Observatory (SDO) and the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) to derive the temperature, emission measure and differential emission measure of the flaring regions and investigate the evolution of the plasma in the flaring ribbons. The ribbons were visible at all SDO/AIA EUV/UV wavelengths, in particular, at 94 and 131 \AA\ filters, sensitive to temperatures of 8 MK and 12 MK. Time evolution of the emission measure of the plasma above 10 MK at the ribbons has a peak near the HXR peak time. The presence of hot plasma in the lower atmosphere is further confirmed by RHESSI imaging spectroscopy analysis, which shows resolved sources at 11-13 MK associated with at least one ribbon. We found that collisional beam heating can only marginally explain the necessary power to heat the 10 MK plasma at the ribbons.Comment: 21 pages, 15 figure

    The spectral content of SDO/AIA 1600 and 1700 \AA\ filters from flare and plage observations

    Get PDF
    The strong enhancement of the ultraviolet emission during solar flares is usually taken as an indication of plasma heating in the lower solar atmosphere caused by the deposition of the energy released during these events. Images taken with broadband ultraviolet filters by the {\em Transition Region and Coronal Explorer} (TRACE) and {\em Atmospheric Imaging Assembly} (AIA 1600 and 1700~\AA) have revealed the morphology and evolution of flare ribbons in great detail. However, the spectral content of these images is still largely unknown. Without the knowledge of the spectral contribution to these UV filters, the use of these rich imaging datasets is severely limited. Aiming to solve this issue, we estimate the spectral contributions of the AIA UV flare and plage images using high-resolution spectra in the range 1300 to 1900~\AA\ from the Skylab NRL SO82B spectrograph. We find that the flare excess emission in AIA 1600~\AA\ is { dominated by} the \ion{C}{4} 1550~\AA\ doublet (26\%), \ion{Si}{1} continua (20\%), with smaller contributions from many other chromospheric lines such as \ion{C}{1} 1561 and 1656~\AA\ multiplets, \ion{He}{2} 1640~\AA, \ion{Si}{2} 1526 and 1533~\AA. For the AIA 1700~\AA\ band, \ion{C}{1} 1656~\AA\ multiplet is the main contributor (38\%), followed by \ion{He}{2} 1640 (17\%), and accompanied by a multitude of other, { weaker} chromospheric lines, with minimal contribution from the continuum. Our results can be generalized to state that the AIA UV flare excess emission is of chromospheric origin, while plage emission is dominated by photospheric continuum emission in both channels.Comment: Accepted for publication in ApJ Skylab NRL SO82B data used in this work available at http://dx.doi.org/10.5525/gla.researchdata.68

    IRIS Observations of the Mg II h & k Lines During a Solar Flare

    Get PDF
    The bulk of the radiative output of a solar flare is emitted from the chromosphere, which produces enhancements in the optical and UV continuum, and in many lines, both optically thick and thin. We have, until very recently, lacked observations of two of the strongest of these lines: the Mg II h & k resonance lines. We present a detailed study of the response of these lines to a solar flare. The spatial and temporal behaviour of the integrated intensities, k/h line ratios, line of sight velocities, line widths and line asymmetries were investigated during an M class flare (SOL2014-02-13T01:40). Very intense, spatially localised energy input at the outer edge of the ribbon is observed, resulting in redshifts equivalent to velocities of ~15-26km/s, line broadenings, and a blue asymmetry in the most intense sources. The characteristic central reversal feature that is ubiquitous in quiet Sun observations is absent in flaring profiles, indicating that the source function increases with height during the flare. Despite the absence of the central reversal feature, the k/h line ratio indicates that the lines remain optically thick during the flare. Subordinate lines in the Mg II passband are observed to be in emission in flaring sources, brightening and cooling with similar timescales to the resonance lines. This work represents a first analysis of potential diagnostic information of the flaring atmosphere using these lines, and provides observations to which synthetic spectra from advanced radiative transfer codes can be compared.Comment: 12 pages, 14 figures, Accepted for publication in Astronomy and Astrophysic

    Comparison of solar radio and EUV synoptic limb charts during the present solar maximum

    Get PDF
    The present solar cycle is particular in many aspects: it had a delayed rising phase, it is the weakest of the last 100 years, and it presents two peaks separated by more than one year. To understand the impact of these characteristics on the solar chromosphere and coronal dynamics, images from a wide wavelength range are needed. In this work we use the 17~GHz radio continuum, formed in the upper chromosphere and the EUV lines 304 and 171~{\AA}, that come from the transition region (He II) and the corona (Fe IX, X), respectively. We analyze daily images at 304 and 171~{\AA} obtained by the Atmospheric Imaging Assembly (AIA). The 17~GHz maps were obtained by the Nobeyama Radioheliograph (NoRH). To construct synoptic limb charts, we calculated the mean emission of delimited limb areas with 100" wide and angular separation of 55^\circ. At the equatorial region, the results show an hemispheric asymmetry of the solar activity. The northern hemisphere dominance is coincident with the first sunspot number peak, whereas the second peak occurs concurrently with the increase in the activity at the south. The polar emission reflects the presence of coronal holes at both EUV wavelengths, moreover, the 17~GHz polar brightenings can be associated with the coronal holes. Until 2013, both EUV coronal holes and radio polar brightenings were more predominant at the south pole. Since then they have not been apparent in the north, but thus appear in the beginning of 2015 in the south as observed in the synoptic charts. This work strengthens the association between coronal holes and the 17~GHz polar brightenings as it is evident in the synoptic limb charts, in agreement with previous case study papers. The enhancement of the radio brightness in coronal holes is explained by the presence of bright patches closely associated with the presence of intense unipolar magnetic fields.Comment: 6 pages, 5 figures. Acccepted for publication in Astronomy & Astrophysic

    A pulsatile pharyngeal wall: case report and clinical relevance

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Avaliação experimental do efeito de "strain shielding" no fémur distal induzido pela utilização de hastes na revisão da artroplastia total do joelho

    Get PDF
    A utilização de hastes na revisão da artroplastia total do joelho é um procedimento clínico comum quando a qualidade do osso na superfície condilar é de baixa qualidade ou então apresenta defeitos significativos. A haste é usada para aumentar a estabilidade do componente condilar necessária a longevidade da artroplastia. No entanto, a utilização de hastes é referida como causa para o aumento do efeito de stress/strain-shielding no osso, podendo este conduzir a um efeito de reabsorção óssea. Os resultados experimentais obtidos evidenciaram que a utilização de hastes altera o estado de deformação do osso relativamente ao estado fisiológico, sendo estas mais desfavoráveis para o caso da utilização de hastes do tipo press-fit. A utilização de hastes promove o efeito de strain-shielding que potencia o efeito de reabsorção óssea podendo originar a instabilidade do implante a longo prazo. A questão que se coloca é saber até que ponto a eventual reabsorção óssea é suficiente para provocar a instabilidade da haste e consequentemente a mesma da prótese a longo prazo. A fixação biomecânica (ou biológica) conseguida nos primeiros anos da artroplastia pode ser suficiente para evitar os efeitos nefastos da reabsorção óssea
    corecore