14,273 research outputs found

    Periodicities In The X-Ray Intensity Variations of TV Columbae: An Intermediate Polar

    Get PDF
    We present results from a temporal analysis of the longest and the most sensitive X-ray observations of TV Columbae--an intermediate polar. The observations were carried out with the RXTE PCA, ROSAT PSPC, and ASCA. Data were analyzed using a 1-dimensional CLEAN and Bayesian algorithms. The presence of a nearly sinusoidal modulation due to the spin of the white dwarf is seen clearly in all the data, confirming the previous reports based on the EXOSAT data. An improved period of 1909.7+/-2.5s is derived for the spin from the RXTE data.The binary period of 5.5hr is detected unambiguously in X-rays for the first time. Several side-bands due to the interaction of these periods are observed in the power spectra, thereby suggesting contributions from both the disk-fed and the stream-fed accretion for TV Col. The accretion disk could perhaps be precessing as side-bands due to the influence of 4 day period on the orbital period are seen. The presence of a significant power at certain side-bands of the spin frequency indicates that the emission poles are asymmetrically located. The strong power at the orbital side-bands seen in both the RXTE and ROSAT data gives an indication for an absorption site fixed in the orbital frame. Both the spin and the binary modulation are found to be energy-dependent. Increased hardness ratio during a broad dip in the intensity at binary phase of 0.75--1.0 confirms the presence of a strong attenuation due to additional absorbers probably from an impact site of the accretion stream with the disk or magnetosphere. Hardness ratio variations and the energy dependent modulation depth during the spin modulation can be explained by partially covered absorbers in the path of X-ray emission region in the accretion stream.Comment: 34 pages, including 12 figures, Accepted for publication in Astronomical Journal, scheduled for January 2004 issue (vol. 127

    The periods of the intermediate polar RX J0153.3+7446

    Get PDF
    We present the first optical photometry of the counterpart to the candidate intermediate polar RX J0153.3+7446. This reveals an optical pulse period of 2333s +/- 5s. Reanalysis of the previously published ROSAT X-ray data reveals that the true X-ray pulse period is probably 1974s +/- 30s, rather than the 1414 s previously reported. Given that the previously noted orbital period of the system is 3.94 h, we are able to identify the X-ray pulse period with the white dwarf spin period and the optical pulse period with the rotation period of the white dwarf in the binary reference frame, as commonly seen in other intermediate polars. We thus confirm that RX J0153.3+7446 is indeed a typical intermediate polar.Comment: 4 pages, submitted to A&A Letter

    Short period eclipsing binary candidates identified using SuperWASP

    Get PDF
    We present light curves and periods of 53 candidates for short period eclipsing binary stars identified by SuperWASP. These include 48 newly identified objects with periods <2 × 10^4 s (~0.23 d), as well as the shortest period binary known with main sequence components (GSC2314–0530 = 1SWASP J022050.85 + 332047.6) and four other previously known W UMa stars (although the previously reported periods for two of these four are shown to be incorrect). The period distribution of main sequence contact binaries shows a sharp cut-off at a lower limit of around 0.22 d, but until now, very few systems were known close to this limit. These new candidates will therefore be important for understanding the evolution of low mass stars and to allow investigation of the cause of the period cut-off

    Principles of Discrete Time Mechanics: IV. The Dirac Equation, Particles and Oscillons

    Get PDF
    We apply the principles of discrete time mechanics discussed in earlier papers to the first and second quantised Dirac equation. We use the Schwinger action principle to find the anticommutation relations of the Dirac field and of the particle creation operators in the theory. We find new solutions to the discrete time Dirac equation, referred to as oscillons on account of their extraordinary behaviour. Their principal characteristic is that they oscillate with a period twice that of the fundamental time interval T of our theory. Although these solutions can be associated with definite charge, linear momentum and spin, such objects should not be observable as particles in the continuous time limit. We find that for non-zero T they correspond to states with negative squared norm in Hilbert space. However they are an integral part of the discrete time Dirac field and should play a role in particle interactions analogous to the role of longitudinal photons in conventional quantum electrodynamics.Comment: 27 pages LateX; published versio

    The mass of the black hole in LMC X-3

    Get PDF
    New high resolution, optical spectroscopy of the high mass X-ray binary LMC X-3, shows the spectral type of the donor star changes with phase due to irradition by the X-ray source. We find the spectral type is likely to be B5V, and only appears as B3V when viewing the heated side of the donor. Combining our measurements with those previously published, and taking into account the effects of X-ray irradiation, results in a value for the donor star radial velocity semi-amplitude of Ko=256.7±4.9K_{o} = 256.7 \pm 4.9~km~s1^{-1}. We find the mass of the black hole lies in the range 9.5MMx13.6M9.5M_{\odot} \leq M_{\rm x} \leq 13.6M_{\odot}

    Interferometer

    Get PDF
    A high resolution interferometer is described. The interferometer is insensitive to slight misalignment of its elements, avoids channeling in the spectrum, generates a maximum equal path fringe contrast, produces an even two sided interferogram without critical matching of the wedge angles of the beamsplitter and compensator wedges, and is optically phase tunable. The interferometer includes a mirror along the path of each beam component produced by the beamsplitter, for reflecting the beam component from the beamsplitter, for reflecting the beam component from the beamsplitter to a corresponding retroreflector and for reflecting the beam returned by the retroreflector back to the beamsplitter. A wedge located along each beam component path, is large enough to cover the retroreflector, so that each beam component passes through the wedge during movement towards the retroreflector and away therefrom

    High mass X-ray binaries in the NIRorbital solutions of two highly obscured systems

    Get PDF
    The maximum mass of a neutron star (NS) is poorly defined. Theoretical attempts to define this mass have thus far been unsuccessful. Observational results currently provide the only means of narrowing this mass range down. Eclipsing X-ray binary (XRB) pulsar systems are the only interacting binaries in which the mass of the NS may be measured directly. Only 10 such systems are known to exist, 6 of which have yielded NS masses in the range 1.06 - 1.86 M_{\odot}.We present the first orbital solutions of two further eclipsing systems, OAO 1657-415 and EXO 1722-363, whose donor stars have only recently been identified. Using observations obtained using the VLT/ISAAC NIR spectrograph, our initial work was concerned with providing an accurate spectral classification of the two counterpart stars, leading to a consistent explanation of the mechanism for spin period evolution of OAO 1657-415. Calculating radial velocities allowed orbital solutions for both systems to be computed. These are the first accurate determinations of the NS and counterpart masses in XRB pulsar systems to be made employing NIR spectroscopy.Comment: 5 pages, 3 figures, contribution to the proceedings of "The multi-wavelength view of hot, massive stars", 39th Li`ege Int. Astroph. Coll., 12-16 July 201
    corecore