2,126 research outputs found
Glass shell manufacturing in space
Residual gases always found in glass shells are CO2, O2 and N2. In those cases where high water vapor pressure is maintained in the furnace, water is also found in the shells. Other evidence for the existence of water in shells is the presence of water-induced surface weathering of the interior shell surface. Water and CO2 are the predominant volatiles generated by the pyrolysis of both inorganic and hydrolyzed metal-organic gels. The pyrolysates of unhydrolyzed metal-organic gels also contain, in addition to water and CO2, significant levels of organic volatiles, such as ethanol and some hydrocarbons; on complete oxidation, these produce CO2 and water as well. Water is most likely the initial blowing agent, it is produced copiously during the initial stages of heating. In the later stages, CO2 becomes the dominant gas as H2O is lost at increasing rates. Water in the shell arises mainly from gel dehydration, CO2 by sodium bicarbonate/carbonate decomposition and carbon oxidation, and O2 and N2 by permeation of the ambient furnace air through the molten shell wall
Multiple Charge State Beam Acceleration at Atlas
A test of the acceleration of multiple charge-state uranium beams was
performed at the ATLAS accelerator. A 238U+26 beam was accelerated in the ATLAS
PII linac to 286 MeV (~1.2 MeV/u) and stripped in a carbon foil located 0.5 m
from the entrance of the ATLAS Booster section. A 58Ni9+ 'guide' beam from the
tandem injector was used to tune the Booster for 238U+38. All charge states
from the stripping were injected into the booster and accelerated. Up to 94% of
the beam was accelerated through the Booster linac, with losses mostly in the
lower charge states. The measured beam properties of each charge state and a
comparison to numerical simulations are reported in this paper.Comment: LINAC2000, MOD0
A Variational Principle Based Study of KPP Minimal Front Speeds in Random Shears
Variational principle for Kolmogorov-Petrovsky-Piskunov (KPP) minimal front
speeds provides an efficient tool for statistical speed analysis, as well as a
fast and accurate method for speed computation. A variational principle based
analysis is carried out on the ensemble of KPP speeds through spatially
stationary random shear flows inside infinite channel domains. In the regime of
small root mean square (rms) shear amplitude, the enhancement of the ensemble
averaged KPP front speeds is proved to obey the quadratic law under certain
shear moment conditions. Similarly, in the large rms amplitude regime, the
enhancement follows the linear law. In particular, both laws hold for the
Ornstein-Uhlenbeck process in case of two dimensional channels. An asymptotic
ensemble averaged speed formula is derived in the small rms regime and is
explicit in case of the Ornstein-Uhlenbeck process of the shear. Variational
principle based computation agrees with these analytical findings, and allows
further study on the speed enhancement distributions as well as the dependence
of enhancement on the shear covariance. Direct simulations in the small rms
regime suggest quadratic speed enhancement law for non-KPP nonlinearities.Comment: 28 pages, 14 figures update: fixed typos, refined estimates in
section
Isobaric multiplet yrast energies and isospin non-conserving forces
The isovector and isotensor energy differences between yrast states of
isobaric multiplets in the lower half of the region are quantitatively
reproduced in a shell model context. The isospin non-conserving nuclear
interactions are found to be at least as important as the Coulomb potential.
Their isovector and isotensor channels are dominated by J=2 and J=0 pairing
terms, respectively. The results are sensitive to the radii of the states,
whose evolution along the yrast band can be accurately followed.Comment: 4 pages, 4 figures. Superseeds second part of nucl-th/010404
Multiple-Charge Beam Dynamics in an Ion Linac
There is demand for the construction of a medium-energy ion linear accelerator based on superconducting rf (SRF) technology. It must be capable of producing several hundred kilowatts of CW beams ranging from protons to uranium. A considerable amount of power is required in order to generate intense beams of rare isotopes for subsequent acceleration. At present, however, the beam power available for the heavier ions would be limited by ion source performance. To overcome this limit, we have studied the possibility of accelerating multiple-charge-state (multi-Q) beams through a linac. We show that such operation is made feasible by the large transverse and longitudinal acceptance which can be obtained in a linac using superconducting cavities. Multi-Q operation provides not only a substantial increase in beam current, but also enables the use of two strippers, thus reducing the size of linac required. Since the superconducting (SC) linac operates in CW mode, space charge effects are essentially eliminated except in the ECR/RFQ region. Therefore an effective emittance growth due to the multi-charge beam acceleration can be minimized
Anomalous Electron Transport in Field-Effect Transistors with Titanium Ditelluride Semimetal Thin-Film Channels
We report on "graphene-like" mechanical exfoliation of thin films of titanium
ditelluride and investigation of their electronic properties. The exfoliated
crystalline TiTe2 films were used as the channel layers in the back-gated
field-effect transistors fabricated with Ti/Al/Au metal contacts on SiO2/Si
substrates. The room-temperature current-voltage characteristics revealed
strongly non-linear behavior with signatures of the source-drain threshold
voltage similar to those observed in the charge-density-wave devices. The
drain-current showed an unusual non-monotonic dependence on the gate bias
characterized by the presence of multiple peaks. The obtained results can be
potentially used for implementation of the non-Boolean logic gates.Comment: 11 pages, 4 figure
Slowdown for time inhomogeneous branching Brownian motion
We consider the maximal displacement of one dimensional branching Brownian
motion with (macroscopically) time varying profiles. For monotone decreasing
variances, we show that the correction from linear displacement is not
logarithmic but rather proportional to . We conjecture that this is
the worse case correction possible
Mirror displacement energies and neutron skins
A gross estimate of the neutron skin [0.80(5) fm] is extracted from
experimental proton radii, represented by a four parameter fit, and observed
mirror displacement energies (CDE). The calculation of the latter relies on an
accurately derived Coulomb energy and smooth averages of the charge symmetry
breaking potentials constrained to state of the art values. The only free
parameter is the neutron skin itself. The Nolen Schiffer anomaly is reduced to
small deviations (rms=127 keV) that exhibit a secular trend. It is argued that
with state of the art shell model calculations the anomaly should disappear.
Highly accurate fits to proton radii emerge as a fringe benefit.Comment: 4 pages 3 figures, superseeds first part of nucl-th/0104048 Present
is new extended version: 5 pages 4 figures. Explains more clearly the
achievements of the previous on
Isospin splitting of the nucleon mean field
The isospin splitting of the nucleon mean field is derived from the Brueckner
theory extended to asymmetric nuclear matter. The Argonne V18 has been adopted
as bare interaction in combination with a microscopic three body force. The
isospin splitting of the effective mass is determined from the
Brueckner-Hartree-Fock self-energy: It is linear acording to the Lane ansatz
and such that for neutron-rich matter. The symmetry potential
is also determined and a comparison is made with the predictions of the
Dirac-Brueckner approach and the phenomenological interactions. The theoretical
predictions are also compared with the empirical parametrizations of neutron
and proton optical-model potentials based on the experimental nucleon-nucleus
scattering and the phenomenological ones adopted in transport-model simulations
of heavy-ion collisions. The direct contribution of the rearrangement term due
to three-body forces to the single particle potential and symmetry potential is
discussed.Comment: 8 pages, 10 figure
- âŠ