71,081 research outputs found
Moduli Vacuum Bubbles Produced by Evaporating Black Holes
We consider a model with a toroidally compactified extra dimension giving
rise to a temperature-dependent 4d effective potential with one-loop
contributions due to the Casimir effect, along with a 5d cosmological constant.
The forms of the effective potential at low and high temperatures indicates a
possibility for the formation of a domain wall bubble, formed by the modulus
scalar field, surrounding an evaporating black hole. This is viewed as an
example of a recently proposed black hole vacuum bubble arising from
matter-sourced moduli fields in the vicinity of an evaporating black hole [D.
Green, E. Silverstein, and D. Starr, Phys. Rev. D74, 024004 (2006),
arXiv:hep-th/0605047]. The black hole bubble can be highly opaque to lower
energy particles and photons, and thereby entrap them within. For high
temperature black holes, there may also be a symmetry-breaking black hole
bubble of false vacuum of the type previously conjectured by Moss [I.G. Moss,
Phys. Rev. D32,1333 (1985)], tending to reflect low energy particles from its
wall. A double bubble composed of these two different types of bubble may form
around the black hole, altering the hole's emission spectrum that reaches
outside observers. Smaller mass black holes that have already evaporated away
could have left vacuum bubbles behind that contribute to the dark matter.Comment: 20 pages; to appear in Phys.Rev.
The thalamic reticular nucleus: a functional hub for thalamocortical network dysfunction in schizophrenia and a target for drug discovery
The thalamus (comprising many distinct nuclei) plays a key role in facilitating sensory discrimination and cognitive processes through connections with the cortex. Impaired thalamocortical processing has long been considered to be involved in schizophrenia. In this review we focus on the thalamic reticular nucleus (TRN) providing evidence for it being an important communication hub between the thalamus and cortex and how it may play a key role in the pathophysiology of schizophrenia. We first highlight the functional neuroanatomy, neurotransmitter localisation and physiology of the TRN. We then present evidence of the physiological roles of the TRN in relation to oscillatory activity, cognition and behaviour. Next we discuss the role of the TRN in rodent models of risk factors for schizophrenia (genetic and pharmacological) and provide evidence for TRN deficits in schizophrenia. Finally we discuss new drug targets for schizophrenia in relation to restoring TRN circuitry dysfunction
Properties of derivative expansion approximations to the renormalization group
Approximation only by derivative (or more generally momentum) expansions,
combined with reparametrization invariance, turns the continuous
renormalization group for quantum field theory into a set of partial
differential equations which at fixed points become non-linear eigenvalue
equations for the anomalous scaling dimension . We review how these
equations provide a powerful and robust means of discovering and approximating
non-perturbative continuum limits. Gauge fields are briefly discussed.
Particular emphasis is placed on the r\^ole of reparametrization invariance,
and the convergence of the derivative expansion is addressed.Comment: (Minor touch ups of the lingo.) Invited talk at RG96, Dubna, Russia;
14 pages including 2 eps figures; uses LaTeX, epsf and sprocl.st
A survey of computational aerodynamics in the United States
Programs in theoretical and computational aerodynamics in the United States are described. Those aspects of programs that relate to aeronautics are detailed. The role of analysis at various levels of sophistication is discussed as well as the inverse solution techniques that are of primary importance in design methodology. The research is divided into the broad categories of application for boundary layer flow, Navier-Stokes turbulence modeling, internal flows, two-dimensional configurations, subsonic and supersonic aircraft, transonic aircraft, and the space shuttle. A survey of representative work in each area is presented
High-Temperature Processing of Solids Through Solar Nebular Bow Shocks: 3D Radiation Hydrodynamics Simulations with Particles
A fundamental, unsolved problem in Solar System formation is explaining the
melting and crystallization of chondrules found in chondritic meteorites.
Theoretical models of chondrule melting in nebular shocks has been shown to be
consistent with many aspects of thermal histories inferred for chondrules from
laboratory experiments; but, the mechanism driving these shocks is unknown.
Planetesimals and planetary embryos on eccentric orbits can produce bow shocks
as they move supersonically through the disk gas, and are one possible source
of chondrule-melting shocks. We investigate chondrule formation in bow shocks
around planetoids through 3D radiation hydrodynamics simulations. A new
radiation transport algorithm that combines elements of flux-limited diffusion
and Monte Carlo methods is used to capture the complexity of radiative
transport around bow shocks. An equation of state that includes the rotational,
vibrational, and dissociation modes of H is also used. Solids are followed
directly in the simulations and their thermal histories are recorded. Adiabatic
expansion creates rapid cooling of the gas, and tail shocks behind the embryo
can cause secondary heating events. Radiative transport is efficient, and bow
shocks around planetoids can have luminosities few
L. While barred and radial chondrule textures could be produced in
the radiative shocks explored here, porphyritic chondrules may only be possible
in the adiabatic limit. We present a series of predicted cooling curves that
merit investigation in laboratory experiments to determine whether the solids
produced by bow shocks are represented in the meteoritic record by chondrules
or other solids.Comment: Accepted for publication in ApJ. Images have been resized to conform
to arXiv limits, but are all readable upon adjusting the zoom. Changes from
v1: Corrected typos discovered in proofs. Most changes are in the appendi
- …