3,968 research outputs found

    Epilepsy

    Get PDF
    [Handwritten

    The effect of low-energy ion-implantation on the electrical transport properties of Si-SiO2 MOSFETs

    Full text link
    Using silicon MOSFETs with thin (5nm) thermally grown SiO2 gate dielectrics, we characterize the density of electrically active traps at low-temperature after 16keV phosphorus ion-implantation through the oxide. We find that, after rapid thermal annealing at 1000oC for 5 seconds, each implanted P ion contributes an additional 0.08 plus/minus 0.03 electrically active traps, whilst no increase in the number of traps is seen for comparable silicon implants. This result shows that the additional traps are ionized P donors, and not damage due to the implantation process. We also find, using the room temperature threshold voltage shift, that the electrical activation of donors at an implant density of 2x10^12 cm^-2 is ~100%.Comment: 11 pages, 10 figure

    New results on heavy hadron spectroscopy with NRQCD

    Get PDF
    We present results for the spectrum of b-bbar bound states in the quenched approximation for three different values of the lattice spacing. Results for spin-independent splittings are shown to have good scaling behaviour; spin-dependent splittings are more sensitive to discretisation effects. We discuss what needs to be done to match the experimental spectrum.Comment: 3 pages, contribution to Lattice'9

    Single-photon emitting diode in silicon carbide

    Full text link
    Electrically driven single-photon emitting devices have immediate applications in quantum cryptography, quantum computation and single-photon metrology. Mature device fabrication protocols and the recent observations of single defect systems with quantum functionalities make silicon carbide (SiC) an ideal material to build such devices. Here, we demonstrate the fabrication of bright single photon emitting diodes. The electrically driven emitters display fully polarized output, superior photon statistics (with a count rate of >>300 kHz), and stability in both continuous and pulsed modes, all at room temperature. The atomic origin of the single photon source is proposed. These results provide a foundation for the large scale integration of single photon sources into a broad range of applications, such as quantum cryptography or linear optics quantum computing.Comment: Main: 10 pages, 6 figures. Supplementary Information: 6 pages, 6 figure

    High superconducting anisotropy and weak vortex pinning in Co doped LaFeAsO

    Full text link
    Here, we present an electrical transport study in single crystals of LaFe0.92_{0.92}Co0.08_{0.08}AsO (Tc≃9.1T_c \simeq 9.1 K) under high magnetic fields. In contrast to most of the previously reported Fe based superconductors, and despite its relatively low TcT_c, LaFe1−x_{1-x}Cox_xAsO shows a superconducting anisotropy which is comparable to those seen for instance in the cuprates or γH=Hc2ab/Hc2c=mc/mab≃9\gamma_H = H_{c2}^{ab}/H_{c2}^{c} = m_c/m_{ab} \simeq 9, where mc/mabm_c/m_{ab} is the effective mass anisotropy. Although, in the present case and as in all Fe based superconductors, γ→1\gamma \rightarrow 1 as T→0T \rightarrow 0. Under the application of an external field, we also observe a remarkable broadening of the superconducting transition particularly for fields applied along the inter-planar direction. Both observations indicate that the low dimensionality of LaFe1−x_{1-x}Cox_xAsO is likely to lead to a more complex vortex phase-diagram when compared to the other Fe arsenides and consequently, to a pronounced dissipation associated with the movement of vortices in a possible vortex liquid phase. When compared to, for instance, F-doped compounds pertaining to same family, we obtain rather small activation energies for the motion of vortices. This suggests that the disorder introduced by doping LaFeAsO with F is more effective in pinning the vortices than alloying it with Co.Comment: 7 figures, 7 pages, Phys. Rev. B (in press

    Low temperature heat capacity of Fe_{1-x}Ga_{x} alloys with large magneostriction

    Full text link
    The low temperature heat capacity C_{p} of Fe_{1-x}Ga_{x} alloys with large magnetostriction has been investigated. The data were analyzed in the standard way using electron (γT\gamma T) and phonon (βT3\beta T^{3}) contributions. The Debye temperature ΘD\Theta_{D} decreases approximately linearly with increasing Ga concentration, consistent with previous resonant ultrasound measurements and measured phonon dispersion curves. Calculations of ΘD\Theta_{D} from lattice dynamical models and from measured elastic constants C_{11}, C_{12} and C_{44} are in agreement with the measured data. The linear coefficient of electronic specific heat γ\gamma remains relatively constant as the Ga concentration increases, despite the fact that the magnetoelastic coupling increases. Band structure calculations show that this is due to the compensation of majority and minority spin states at the Fermi level.Comment: 14 pages, 6 figure

    Phase transitions and iron-ordered moment form factor in LaFeAsO

    Get PDF
    Elastic neutron scattering studies of an optimized LaFeAsO single crystal reveal that upon cooling, an onset of the tetragonal (T)-to-orthorhombic (O) structural transition occurs at TS≈156T_\texttt{S} \approx 156 K, and it exhibits a sharp transition at TP≈148T_\texttt{P} \approx 148 K. We argue that in the temperature range TST_\texttt{S} to TPT_\texttt{P}, T and O structures may dynamically coexist possibly due to nematic spin correlations recently proposed for the iron pnictides, and we attribute TPT_\texttt{P} to the formation of long-range O domains from the finite local precursors. The antiferromagnetic structure emerges at TN≈140T_\texttt{N} \approx 140 K, with the iron moment direction along the O \emph{a} axis. We extract the iron magnetic form factor and use the tabulated ⟨j0⟩\langle j_0\rangle of Fe, Fe2+^{2+} and Fe3+^{3+} to obtain a magnetic moment size of ∼\sim0.8 μB\mu_\texttt{B} at 9.5 K.Comment: 7 pages, 6 figures, 3 table

    Electrically-detected magnetic resonance in ion-implanted Si:P nanostructures

    Full text link
    We present the results of electrically-detected magnetic resonance (EDMR) experiments on silicon with ion-implanted phosphorus nanostructures, performed at 5 K. The devices consist of high-dose implanted metallic leads with a square gap, into which Phosphorus is implanted at a non-metallic dose corresponding to 10^17 cm^-3. By restricting this secondary implant to a 100 nm x 100 nm region, the EDMR signal from less than 100 donors is detected. This technique provides a pathway to the study of single donor spins in semiconductors, which is relevant to a number of proposals for quantum information processing.Comment: 9 pages, 3 figure
    • …
    corecore