11,004 research outputs found

    Chemical application of diffusion quantum Monte Carlo

    Get PDF
    The diffusion quantum Monte Carlo (QMC) method gives a stochastic solution to the Schroedinger equation. This approach is receiving increasing attention in chemical applications as a result of its high accuracy. However, reducing statistical uncertainty remains a priority because chemical effects are often obtained as small differences of large numbers. As an example, the single-triplet splitting of the energy of the methylene molecule CH sub 2 is given. The QMC algorithm was implemented on the CYBER 205, first as a direct transcription of the algorithm running on the VAX 11/780, and second by explicitly writing vector code for all loops longer than a crossover length C. The speed of the codes relative to one another as a function of C, and relative to the VAX, are discussed. The computational time dependence obtained versus the number of basis functions is discussed and this is compared with that obtained from traditional quantum chemistry codes and that obtained from traditional computer architectures

    Cooling a single atom in an optical tweezer to its quantum ground state

    Full text link
    We report cooling of a single neutral atom to its three-dimensional vibrational ground state in an optical tweezer. After employing Raman sideband cooling for tens of milliseconds, we measure via sideband spectroscopy a three-dimensional ground-state occupation of ~90%. We further observe coherent control of the spin and motional state of the trapped atom. Our demonstration shows that an optical tweezer, formed simply by a tightly focused beam of light, creates sufficient confinement for efficient sideband cooling. This source of ground-state neutral atoms will be instrumental in numerous quantum simulation and logic applications that require a versatile platform for storing and manipulating ultracold single neutral atoms. For example, these results will improve current optical tweezer experiments studying atom-photon coupling and Rydberg quantum logic gates, and could provide new opportunities such as rapid production of single dipolar molecules or quantum simulation in tweezer arrays.Comment: Updated intro, titl

    A comment on "Amplification of endpoint structure for new particle mass measurement at the LHC"

    Full text link
    We present a comment on the kinematic variable mCT2m_{CT2} recently proposed in "Amplification of endpoint structure for new particle mass measurement at the LHC". The variable is designed to be applied to models such as R-parity conserving Supersymmetry (SUSY) when there is pair production of new heavy particles each of which decays to a single massless visible and a massive invisible component. It was proposed in "Amplification of endpoint structure for new particle mass measurement at the LHC" that a measurement of the peak of the mCT2m_{CT2} distribution could be used to precisely constrain the masses of the SUSY particles. We show that when Standard Model backgrounds are included in simulations, the sensitivity of the mCT2m_{CT2} variable to the SUSY particle masses is more seriously impacted for mCT2m_{CT2} than for other previously proposed variables.Comment: 5 page

    Expression and Circular Dichroism Studies of the Extracellular Domain of the alpha Subunit of the Nicotinic Acetylcholine Receptor

    Get PDF
    To provide material suitable for structural studies of the nicotinic acetylcholine receptor, we have expressed and purified the NH2-terminal extracellular domain of the mouse muscle alpha subunit. Several constructs were initially investigated using Xenopus oocytes as a convenient small scale expression system. A fusion protein (alpha210GPI) consisting of the 210 NH2-terminal amino acids of the alpha subunit and a glycosylphosphatidylinositol anchorage sequence conferred surface alpha-bungarotoxin binding in oocytes. Coexpression of alpha210GPI with an analogous construct made from the delta subunit showed no evidence of heterodimer formation. The alpha210GPI protein was chosen for large scale expression in transfected Chinese hamster ovary cells. The alpha210GPI protein was cleaved from these cells and purified on an immunoaffinity column. Gel and column chromatography show that the purified protein is processed as expected and exists as a monomer. The purified protein also retains the two distinct, conformation-specific binding sites expected for the correctly folded alpha subunit. Circular dichroism studies of alpha210GPI suggest that this region of the receptor includes considerable beta-sheet secondary structure, with a small proportion of alpha-helix

    Functional expression of the yeast alpha-factor receptor in Xenopus oocytes

    Get PDF
    The STE2 gene of the yeast Saccharomyces cerevisiae encodes a 431- residue polypeptide that has been shown by chemical cross-linking and genetic studies to be a component of the receptor for the peptide mating pheromone, alpha-factor. To demonstrate directly that the ligand binding site of the alpha-factor receptor is comprised solely of the STE2 gene product, the STE2 protein was expressed in Xenopus oocytes. Oocytes microinjected with synthetic STE2 mRNA displayed specific surface binding for 35S-labeled alpha-factor (up to 40 sites/micron2/ng RNA). Oocytes injected with either STE2 antisense RNA or heterologous receptor mRNA (nicotinic acetylcholine receptor alpha, beta, gamma, and delta subunit mRNAs) showed no binding activity (indistinguishable from uninjected control oocytes). The apparent KD (7 nM) of the alpha-factor binding sites expressed on the oocyte surface, determined by competition binding studies, agreed with the values reported for intact yeast cells and yeast plasma membrane fractions. These findings demonstrate that the STE2 gene product is the only yeast polypeptide required for biogenesis of a functional alpha-factor receptor. Electrophysiological measurements indicated that the membrane conductance of oocytes injected with STE2 mRNA, or with both STE2 and GPA1 (encoding a yeast G protein alpha-subunit) mRNAs, did not change and was not affected by pheromone binding. Thus, the alpha-factor receptor, like mammalian G protein-coupled receptors, apparently lacks activity as an intrinsic or ligand-gated ion channel. This report is the first instance in which a membrane-bound receptor from a unicellular eukaryote has been expressed in a vertebrate cell

    Long-Range Coupling in an Allosteric Receptor Revealed by Mutant Cycle Analysis

    Get PDF
    The functional coupling of residues that are far apart in space is the quintessential property of allosteric proteins. For example, in Cys-loop receptors, the gating of an intrinsic ion channel is allosterically regulated by the binding of small molecule neurotransmitters 50–60 Å from the channel gate. Some residues near the binding site must have as their primary function the communication of the binding event to the gating region. These gating pathway residues are essential to function, but their identification and characterization can be challenging. This work introduces a simple strategy, derived from mutant cycle analysis, for identifying gating pathway residues using macroscopic measurements alone. In the exemplar Cys-loop receptor, the nicotinic acetylcholine receptor, a well-characterized reporter mutation (βL9′S) known to impact gating, was combined with mutations of target residues in the ligand-binding domain hypothesized or previously found to be functionally significant. A mutant cycle analysis of the macroscopic EC50 measurements can then provide insights into the role of the target residue. This new method, elucidating long-range functional coupling in allosteric receptors, can be applied to several reporter mutations in a wide variety of receptors to identify previously characterized and novel mutations that impact the gating pathway. We support our interpretation of macroscopic data with single-channel studies. Elucidating long-range functional coupling in allosteric receptors should be broadly applicable to determining functional roles of residues in allosteric receptors

    Low Molecular Weight mRNA Encodes a Protein That Controls Serotonin 5-HT_(1c) and Acetylcholine M_1 Receptor Sensitivity in Xenopus Oocytes

    Get PDF
    Serotonin 5-HT_(1c) and acetylcholine M_1 receptors activate phosphoinositidase, resulting in an increased formation of IP_3 and 1,2 diacylglycerol. In Xenopus oocytes injected with mRNA encoding either of these receptors, Ca^(2+) released from intracellular stores in response to IP3 then opens Ca^(2+)-gated Cl^-channels. In the present experiments, oocytes expressing a transcript from a cloned mouse serotonin 5-HT_(1c) receptor were exposed to identical 15-s pulses of agonist, administered 2 min apart; the second current response was two to three times that of the first. However, in those oocytes coinjected with the 5-HT_(1c) receptor transcript and a low molecular weight fraction (0.3-1.5 kb) of rat brain mRNA, the second current response was ~50% of the first. Thus, the low molecular weight RNA encodes a protein (or proteins) that causes desensitization. Experiments using fura-2 or a Ca^(2+)-free superfusate indicated that desensitization of the 5-HT_(1c) receptor response does not result from a sustained elevation of intracellular Ca^(2+) level or require the entry of extracellular Ca^(2+). Photolysis of caged IP_3 demonstrated that an increase in IP_3 and a subsequent rise in Ca^(2+) do not produce desensitization of either the IP_3 or 5-HT_(1c) peak current responses. Furthermore, in oocytes coinjected with the low molecular weight RNA and a transcript from the rat M_1 acetylcholine receptor, the M_1 current response was greatly attenuated. Our data suggest that the proteins involved in attenuation of the M_1 current response and desensitization of the 5-HT_(1c) current response may be the same
    corecore