317 research outputs found

    Continuity equation and local gauge invariance for the N3LO nuclear Energy Density Functionals

    Full text link
    Background: The next-to-next-to-next-to-leading order (N3LO) nuclear energy density functional extends the standard Skyrme functional with new terms depending on higher-order derivatives of densities, introduced to gain better precision in the nuclear many-body calculations. A thorough study of the transformation properties of the functional with respect to different symmetries is required, as a step preliminary to the adjustment of the coupling constants. Purpose: Determine to which extent the presence of higher-order derivatives in the functional can be compatible with the continuity equation. In particular, to study the relations between the validity of the continuity equation and invariance of the functional under gauge transformations. Methods: Derive conditions for the validity of the continuity equation in the framework of time-dependent density functional theory. The conditions apply separately to the four spin-isospin channels of the one-body density matrix. Results: We obtained four sets of constraints on the coupling constants of the N3LO energy density functional that guarantee the validity of the continuity equation in all spin-isospin channels. In particular, for the scalar-isoscalar channel, the constraints are the same as those resulting from imposing the standard U(1) local-gauge-invariance conditions. Conclusions: Validity of the continuity equation in the four spin-isospin channels is equivalent to the local-gauge invariance of the energy density functional. For vector and isovector channels, such validity requires the invariance of the functional under local rotations in the spin and isospin spaces.Comment: 12 Latex pages, submitted to Physical Review

    Neutron-Proton Correlations in an Exactly Solvable Model

    Get PDF
    We examine isovector and isoscalar neutron-proton correlations in an exactly solvable model based on the algebra SO(8). We look particularly closely at Gamow-Teller strength and double beta decay, both to isolate the effects of the two kinds of pairing and to test two approximation schemes: the renormalized neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing correlations become strong enough a phase transition occurs and the dependence of the Gamow-Teller beta+ strength on isospin changes in a dramatic and unfamiliar way, actually increasing as neutrons are added to an N=Z core. Renormalization eliminates the well-known instabilities that plague the QRPA as the phase transition is approached, but only by unnaturally suppressing the isoscalar correlations. Generalized BCS theory, on the other hand, reproduces the Gamow-Teller strength more accurately in the isoscalar phase than in the usual isovector phase, even though its predictions for energies are equally good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe

    Fully-Renormalized QRPA fulfills Ikeda sum rule exactly

    Full text link
    The renormalized quasiparticle-RPA is reformulated for even-even nuclei using restrictions imposed by the commutativity of the phonon creation operator with the total particle number operator. This new version, Fully-Renormalized QRPA (FR-QRPA), is free from the spurious low-energy solutions. Analytical proof is given that the Ikeda sum rule is fullfiled within the FR-QRPA.Comment: 9 page

    Single- and double-beta decay Fermi-transitions in an exactly solvable model

    Full text link
    An exactly solvable model suitable for the description of single and double-beta decay processes of the Fermi-type is introduced. The model is equivalent to the exact shell-model treatment of protons and neutrons in a single j-shell. Exact eigenvalues and eigenvectors are compared to those corresponding to the hamiltonian in the quasiparticle basis (qp) and with the results of both the standard quasiparticle random phase approximation (QRPA) and the renormalized one (RQRPA). The role of the scattering term of the quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with zero energy is shown to be related to the collapse of the QRPA. The RQRPA and the qp solutions do not include this zero-energy eigenvalue in their spectra, probably due to spurious correlations. The meaning of this result in terms of symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to Physcal Review

    A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay

    Get PDF
    A large Hilbert space is used for the calculation of the nuclear matrix elements governing the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Cd116, Te128 and Xe136 within the proton-neutron quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA with proton-neutron pairing (full-RQRPA) methods. We have found that the nuclear matrix elements obtained with the standard pn-QRPA for several nuclear transitions are extremely sensitive to the renormalization of the particle-particle component of the residual interaction of the nuclear hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary accuracy to allow us to extract a reliable limit on the effective neutrino mass. This behaviour, already known from the calculation of the two-neutrino double beta decay matrix elements, manifests itself in the neutrinoless double-beta decay but only if a large model space is used. The full-RQRPA, which takes into account proton-neutron pairing and considers the Pauli principle in an approximate way, offers a stable solution in the physically acceptable region of the particle-particle strength. In this way more accurate values on the effective neutrino mass have been deduced from the experimental lower limits of the half-lifes of neutrinoless double beta decay.Comment: 19 pages, RevTex, 1 Postscript figur

    Reconciliation of the Substorm Onset Determined on the Ground and at the Polar spacecraft

    Get PDF
    An isolated substorm on Oct. 17, 1997 during a close conjunction of the Polar spacecraft and the ground-based MIRACLE network is studied in detail. We identify signatures of substorm onset in the plasma sheet midway between the ionosphere and the equatorial plasma sheet, determine their timing relative to the ground signatures, and discuss their counterparts on the ground and in the equatorial plasma sheet. The substorm onset is determined as the negative bay onset at 2040:42(≠ 5 sec) UT coinciding with the onset of auroral precipitation, energization of plasma sheet electrons at Polar, and strong magnetic field variations perpendicular to the ambient field. Such accurate timing coincidence is consistent with the Alfvén transit time between Polar and the ionosphere. Furthermore, the timing of other field and particle signatures at Polar showed clear deviations from the onset time (≠ 2 min). This suggests that the sequence of these signatures around the onset time can be used to validate the signatures predicted by various substorm onset models

    Neutrinoless double beta decay within Self-consistent Renormalized Quasiparticle Random Phase Approximation and inclusion of induced nucleon currents

    Get PDF
    The first, to our knowledge, calculation of neutrinoless double beta decay (0νββ0\nu\beta\beta-decay) matrix elements within the self-consistent renormalised Quasiparticle Random Phase Approximation (SRQRPA) is presented. The contribution from the momentum-dependent induced nucleon currents to 0νββ0\nu\beta\beta-decay amplitude is taken into account. A detailed nuclear structure study includes the discussion of the sensitivity of the obtained SRQRPA results for 0νββ0\nu\beta\beta-decay of 76^{76}Ge to the parameters of nuclear Hamiltonian, two-nucleon short-range correlations and the truncation of the model space. A comparision with the standard and renormalized QRPA is presented. We have found a considerable reduction of the SRQRPA nuclear matrix elements, resulting in less stringent limits for the effective neutrino mass.Comment: 13 pages, 3 figures, 1 tabl

    Grand unified theory constrained supersymmetry and neutrinoless double beta decay

    Get PDF
    We analyze the contributions to the neutrinoless double β\beta decay (0νββ0\nu\beta\beta-decay) coming from the Grand Unified Theory (GUT) constrained Minimal Supersymmetric Standard Model (MSSM) with trilinear R-parity breaking. We discuss the importance of two-nucleon and pion-exchange realizations of the quark-level 0νββ0\nu\beta\beta-decay transitions. In this context, the questions of reliability of the calculated relevant nuclear matrix elements within the Renormalized Quasiparticle Random Phase Approximation (pn-RQRPA) for several medium and heavy open-shell nuclei are addressed. The importance of gluino and neutralino contributions to 0νββ0\nu\beta\beta-decay is also analyzed. We review the present experiments and deduce limits on the trilinear R-parity breaking parameter λ111′\lambda_{111}' from the non-observability of 0νββ0\nu\beta\beta-decay for different GUT constrained SUSY scenarios. In addition, a detailed study of limits on the MSSM parameter space coming from the B→XsγB \to X_s \gamma processes by using the recent CLEO and OPAL results is performed. Some studies in respect to the future 0νββ0\nu\beta\beta-decay project GENIUS are also presented.Comment: 29 pages, 8 figure

    Neutrinoless Double Beta Decay in Gauge Theories

    Full text link
    Neutrinoless double beta decay is a very important process both from the particle and nuclear physics point of view. Its observation will severely constrain the existing models and signal that the neutrinos are massive Majorana particles. From the elementary particle point of view it pops up in almost every model. In addition to the traditional mechanisms, like the neutrino mass, the admixture of right handed currents etc, it may occur due to the R-parity violating supersymmetric (SUSY) interactions. From the nuclear physics point of view it is challenging, because: 1) The relevant nuclei have complicated nuclear structure. 2) The energetically allowed transitions are exhaust a small part of all the strength. 3) One must cope with the short distance behavior of the transition operators, especially when the intermediate particles are heavy (eg in SUSY models). Thus novel effects, like the double beta decay of pions in flight between nucleons, have to be considered. 4) The intermediate momenta involved are about 100 MeV. Thus one has to take into account possible momentum dependent terms in the nucleon current. We find that, for the mass mechanism, such modifications of the nucleon current for light neutrinos reduce the nuclear matrix elements by about 25 per cent, almost regardless of the nuclear model. In the case of heavy neutrinos the effect is much larger and model dependent. Taking the above effects into account, the available nuclear matrix elements for the experimentally interesting nuclei A = 76, 82, 96, 100, 116, 128, 130, 136 and 150 and the experimental limits on the life times we have extracted new stringent limits on the average neutrino mass and on the R-parity violating coupling for various SUSY models.Comment: Latex, 24 pages, 1 postscript figure, uses iopconf.st
    • …
    corecore