6,592 research outputs found

    Non-Cardiogenic Pulmonary Edema

    Get PDF

    Evidence

    Get PDF

    Adjuvants : an essential component of neisseria vaccines

    Get PDF
    Adjuvants may be classified into delivery systems and immune potentiator or modulator molecules based on their mechanism of action. Neisseria vaccines containing traditional adjuvants such as aluminium salts have existed for long time, but meningitis caused by Neisseria meningitidis serogroups, particularly serogroup B, continues to be a global health problem. Novel strategies have applied in silico and recombinant technologies to develop "universal" antigens (e.g. proteins, peptides and plasmid DNA) for vaccines, but these antigens have been shown to be poorly immunogenic even when alum adjuvanted, implying a need for better vaccine design. In this work we review the use of natural, detoxified, or synthetic molecules in combination with antigens to activate the innate immune system and to modulate the adaptive immune responses. In the main, antigenic and imune potentiator signals are delivered using nano-, micro-particles, alum, or emulsions. The importance of interaction between adjuvants and antigens to activate and target dendritic cells, the bridge between the innate and adaptive immune systems, will be discussed. In addition, nasal vaccine strategies based on the development of mucosal adjuvants and Neisseria derivatives to eliminate the pathogen at the site of infection provide promising adjuvants effective not only against respiratory pathogens, but also against pathogens responsible for enteric and sexually transmitted diseases

    The Cultural Evolution of Rio Arriba County

    Get PDF

    Towards Contagious Animal Disease Detection using Machine Learning

    Get PDF
    In livestock farms an increasing number of sensors is implemented to monitoring farm production and animal welfare, leading to large amounts of data. We investigated the potential of sensor data for the detection of contagious animal diseases, using machine learning for the interpretation of the data. An ..

    On the algebraic invariant curves of plane polynomial differential systems

    Full text link
    We consider a plane polynomial vector field P(x,y)dx+Q(x,y)dyP(x,y)dx+Q(x,y)dy of degree m>1m>1. To each algebraic invariant curve of such a field we associate a compact Riemann surface with the meromorphic differential ω=dx/P=dy/Q\omega=dx/P=dy/Q. The asymptotic estimate of the degree of an arbitrary algebraic invariant curve is found. In the smooth case this estimate was already found by D. Cerveau and A. Lins Neto [Ann. Inst. Fourier Grenoble 41, 883-903] in a different way.Comment: 10 pages, Latex, to appear in J.Phys.A:Math.Ge

    A subarcsecond near-infrared view of massive galaxies at z > 1 with Gemini Multiconjugate Adaptive Optics

    Get PDF
    We present images taken using the Gemini South Adaptive Optics Imager (GSAOI) with the Gemini Multiconjugate Adaptive Optics System (GeMS) in three 2 arcmin2^2 fields in the Spitzer Extragalactic Representative Volume Survey. These GeMS/GSAOI observations are among the first 0.1\approx 0.1^{''} resolution data in the near-infrared spanning extragalactic fields exceeding 1.51.5^{\prime} in size. We use these data to estimate galaxy sizes, obtaining results similar to those from studies with the Hubble Space Telescope, though we find a higher fraction of compact star forming galaxies at z>2z>2. To disentangle the star-forming galaxies from active galactic nuclei (AGN), we use multiwavelength data from surveys in the optical and infrared, including far-infrared data from Herschel, as well as new radio continuum data from the Australia Telescope Compact Array and Very Large Array. We identify ultraluminous infrared galaxies (ULIRGs) at z13z \sim 1-3, which consist of a combination of pure starburst galaxies and Active Galactic Nuclei (AGN)/starburst composites. The ULIRGs show signs of recent merger activity, such as highly disturbed morphologies and include a rare candidate triple AGN. We find that AGN tend to reside in hosts with smaller scale sizes than purely star-forming galaxies of similar infrared luminosity. Our observations demonstrate the potential for MCAO to complement the deeper galaxy surveys to be made with the James Webb Space Telescope.Comment: 20 pages, AJ, in pres

    Unveiling the Active Nucleus of Centaurus A

    Get PDF
    We report new HST WFPC2 and NICMOS observations of the center of the nearest radio galaxy Centaurus A (NGC 5128) and discuss their implications for our understanding of the active nucleus and jet. We detect the active nucleus in the near-IR (K and H) and, for the first time, in the optical (I and V), deriving the spectral energy distribution of the nucleus from the radio to X-rays. The optical and part of the near-IR emission can be explained by the extrapolation of the X-ray power law reddened by A_V~14mag, a value consistent with other independent estimates. The 20pc-scale nuclear disk discovered by Schreier et al. (1998) is detected in the [FeII] 1.64mic line and presents a morphology similar to that observed in Pa alpha with a [FeII]/Pa alpha ratio typical of low ionization Seyfert galaxies and LINERs. NICMOS 3 Pa alpha observations in a 50"x50" circumnuclear region suggest enhanced star formation (~0.3Msun/yr) at the edges of the putative bar seen with ISO, perhaps due to shocks driven into the gas. The light profile, reconstructed from V, H and K observations, shows that Centaurus A has a core profile with a resolved break at ~4" and suggests a black--hole mass of ~10^9 Msun. A linear blue structure aligned with the radio/X-ray jet may indicate a channel of relatively low reddening in which dust has been swept away by the jet.Comment: 19 pages, 13 figures, Astrophysical Journal, in press. High quality figures available at http://www.arcetri.astro.it/~marconi/colpic.htm

    Magnetic and superconducting instabilities of the Hubbard model at the van Hove filling

    Full text link
    We use a novel temperature-flow renormalization group technique to analyze magnetic and superconducting instabilities in the two-dimensional t-t' Hubbard model for particle densities close to the van Hove filling as a function of the next-nearest neighbor hopping t'. In the one-loop flow at the van Hove filling, the characteristic temperature for the flow to strong coupling is suppressed drastically around t'_c approx. -0.33t, suggesting a quantum critical point between d-wave pairing at moderate t'>t'_c and ferromagnetism for t'<t'_c. Upon increasing the particle density in the latter regime the leading instability occurs in the triplet pairing channel.Comment: 4 pages, to appear in Physical Review Letter
    corecore