43 research outputs found

    Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes

    Get PDF
    As fast-charging lithium-ion batteries turn into increasingly important components in forthcoming applications, various strategies have been devoted to the development of high-rate anodes. However, despite vigorous efforts, the low initial Coulombic efficiency and poor volumetric energy density with insufficient electrode conditions remain critical challenges that have to be addressed. Herein, we demonstrate a hybrid anode via incorporation of a uniformly implanted amorphous silicon nanolayer and edge-site-activated graphite. This architecture succeeds in improving lithium ion transport and minimizing initial capacity losses even with increase in energy density. As a result, the hybrid anode exhibits an exceptional initial Coulombic efficiency (93.8%) and predominant fast-charging behavior with industrial electrode conditions. As a result, a full-cell demonstrates a higher energy density (>= 1060 Wh l(-1)) without any trace of lithium plating at a harsh charging current density (10.2 mA cm(-2)) and 1.5 times faster charging than that of conventional graphite

    Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities

    Get PDF
    Laser-driven ion sources are a rapidly developing technology producing high energy, high peak current beams. Their suitability for applications, such as compact medical accelerators, motivates development of robust acceleration schemes using widely available repetitive ultraintense femtosecond lasers. These applications not only require high beam energy, but also place demanding requirements on the source stability and controllability. This can be seriously affected by the laser temporal contrast, precluding the replication of ion acceleration performance on independent laser systems with otherwise similar parameters. Here, we present the experimental generation of >60 MeV protons and >30 MeV u-1 carbon ions from sub-micrometre thickness Formvar foils irradiated with laser intensities >1021 Wcm2. Ions are accelerated by an extreme localised space charge field ≳30 TVm-1, over a million times higher than used in conventional accelerators. The field is formed by a rapid expulsion of electrons from the target bulk due to relativistically induced transparency, in which relativistic corrections to the refractive index enables laser transmission through normally opaque plasma. We replicate the mechanism on two different laser facilities and show that the optimum target thickness decreases with improved laser contrast due to reduced pre-expansion. Our demonstration that energetic ions can be accelerated by this mechanism at different contrast levels relaxes laser requirements and indicates interaction parameters for realising application-specific beam delivery

    Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags

    Get PDF
    Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean  = 5–12 m, sd  = 15–23.7 m) and relatively warm water masses in summer (mean  = 17.9–20.9°C, sd  = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean  = 41–58 m, sd  = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns

    Testosterone Rapidly Augments Retrograde Endocannabinoid Signaling in Proopiomelanocortin Neurons to Suppress Glutamatergic Input from Steroidogenic Factor 1 Neurons via Upregulation of Diacylglycerol Lipase-α

    No full text
    Testosterone exerts profound effects on reproduction and energy homeostasis. Like other orexigenic hormones, it increases endocannabinoid tone within the hypothalamic feeding circuitry. Therefore, we tested the hypothesis that testosterone upregulates the expression of diacylglycerol lipase (DAGL)α in the hypothalamic arcuate nucleus (ARC) to increase energy intake via enhanced endocannabinoid-mediated retrograde inhibition of anorexigenic proopiomelanocortin (POMC) neurons. Energy intake, meal patterns, and energy expenditure were evaluated in orchidectomized, male guinea pigs treated subcutaneously with testosterone propionate (TP; 400 μg) or its sesame oil vehicle (0.1 mL). TP rapidly increased energy intake, meal size, O2 consumption, CO2 production, and metabolic heat production, all of which were antagonized by prior administration of the DAGL inhibitor orlistat (3 μg) into the third ventricle. These orlistat-sensitive, TP-induced increases in energy intake and expenditure were temporally associated with a significant elevation in ARC DAGLα expression. Electrophysiological recordings in hypothalamic slices revealed that TP potentiated depolarization-induced suppression of excitatory glutamatergic input onto identified ARC POMC neurons, which was also abolished by orlistat (3 μM), the CB1 receptor antagonist AM251 (1 μM), and the AMP-activated protein kinase inhibitor compound C (30 μM) and simulated by transient bath application of the dihydrotestosterone mimetic Cl-4AS-1 (100 nM) and testosterone-conjugated bovine serum albumin (100 nM). Thus, testosterone boosts DAGLα expression to augment retrograde, presynaptic inhibition of glutamate release onto ARC POMC neurons that, in turn, increases energy intake and expenditure. These studies advance our understanding of how androgens work within the hypothalamic feeding circuitry to affect changes in energy balance

    Closing the Feedback Loop: On Stakeholder Participation in Management Strategy Evaluation

    No full text
    Management strategy evaluation (MSE) is a simulation-based approach to examine the efficacy of management options in achieving fishery-, ecosystem-, and socioeconomic-related objectives while integrating over system uncertainties. As a form of structured decision analysis, MSE is amenable to stakeholder involvement, which can reduce implementation barriers associated with non-transparent decision-making procedures. Based on analysis of three MSE processes (Atlantic tunas, Atlantic herring, and eastern oysters), we provide suggestions for improving stakeholder engagement in MSE. By assembling a workgroup and modeling team with diverse backgrounds, including professional facilitators, communication liaisons, and social scientists, dialogue can be improved and an atmosphere of mutual learning fostered. Communication further benefits from clearly defining roles, responsibilities, and terms of engagement for all involved; explicitly and transparently identifying goals and objectives of the MSE before modeling has begun; and, when appropriate, revisiting goals and objectives throughout the MSE process. Although MSEs are not without limitations, the participatory modeling framework, wherein stakeholders are actively engaged at each stage of MSE development, provides a useful mechanism to support fisheries management.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore