590 research outputs found

    Magnons in Ferromagnetic Metallic Manganites

    Full text link
    Ferromagnetic (FM) manganites, a group of likely half-metallic oxides, are of special interest not only because they are a testing ground of the classical doubleexchange interaction mechanism for the colossal magnetoresistance, but also because they exhibit an extraordinary arena of emergent phenomena. These emergent phenomena are related to the complexity associated with strong interplay between charge, spin, orbital, and lattice. In this review, we focus on the use of inelastic neutron scattering to study the spin dynamics, mainly the magnon excitations in this class of FM metallic materials. In particular, we discussed the unusual magnon softening and damping near the Brillouin zone boundary in relatively narrow band compounds with strong Jahn-Teller lattice distortion and charge/orbital correlations. The anomalous behaviors of magnons in these compounds indicate the likelihood of cooperative excitations involving spin, lattice, as well as orbital degrees of freedom.Comment: published in J. Phys.: Cond. Matt. 20 figure

    Magnetic Interaction in the Geometrically Frustrated Triangular Lattice Antiferromagnet CuFeO2\rm CuFeO_2

    Full text link
    The spin wave excitations of the geometrically frustrated triangular lattice antiferromagnet (TLA) CuFeO2\rm CuFeO_2 have been measured using high resolution inelastic neutron scattering. Antiferromagnetic interactions up to third nearest neighbors in the ab plane (J_1, J_2, J_3, with J2/J10.44J_2/J_1 \approx 0.44 and J3/J10.57J_3/J_1 \approx 0.57), as well as out-of-plane coupling (J_z, with Jz/J10.29J_z/J_1 \approx 0.29) are required to describe the spin wave dispersion relations, indicating a three dimensional character of the magnetic interactions. Two energy dips in the spin wave dispersion occur at the incommensurate wavevectors associated with multiferroic phase, and can be interpreted as dynamic precursors to the magnetoelectric behavior in this system.Comment: 4 pages, 4 figures, published in Phys. Rev. Let

    Quantum Phase Transition in the Itinerant Antiferromagnet (V0.9Ti0.1)2O3

    Full text link
    Quantum-critical behavior of the itinerant electron antiferromagnet (V0.9Ti0.1)2O3 has been studied by single-crystal neutron scattering. By directly observing antiferromagnetic spin fluctuations in the paramagnetic phase, we have shown that the characteristic energy depends on temperature as c_1 + c_2 T^{3/2}, where c_1 and c_2 are constants. This T^{3/2} dependence demonstrates that the present strongly correlated d-electron antiferromagnet clearly shows the criticality of the spin-density-wave quantum phase transition in three space dimensions.Comment: 4 pages, 4 figure

    Effect of pressure on the quantum spin ladder material IPA-CuCl3

    Full text link
    Inelastic neutron scattering and bulk magnetic susceptibility studies of the quantum S=1/2 spin ladder system IPA-CuCl3 are performed under hydrostatic pressure. The pressure dependence of the spin gap Δ\Delta is determined. At P=1.5P=1.5 GPa it is reduced to Δ=0.79\Delta=0.79 meV from Δ=1.17\Delta=1.17 meV at ambient pressure. The results allow us to predict a soft-mode quantum phase transition in this system at Pc4_\mathrm{c}\sim 4 GPa. The measurements are complicated by a proximity of a structural phase transition that leads to a deterioration of the sample.Comment: 5 pages, 4 figure

    d=3 random field behavior near percolation

    Full text link
    The highly diluted antiferromagnet Mn(0.35)Zn(0.65)F2 has been investigated by neutron scattering for H>0. A low-temperature (T<11K), low-field (H<1T) pseudophase transition boundary separates a partially antiferromagnetically ordered phase from the paramagnetic one. For 1<H<7T at low temperatures, a region of antiferromagnetic order is field induced but is not enclosed within a transition boundary.Comment: 9 pages, 4 figure
    corecore