24 research outputs found

    Evidence for a three-nucleon-force effect in proton-deuteron elastic scattering

    Get PDF
    Developments in spin-polarized internal targets for storage rings have permitted measurements of 197 MeV polarized protons scattering from vector polarized deuterons. This work presents measurements of the polarization observables A_y, iT_11, and C_y,y in proton-deuteron elastic scattering. When compared to calculations with and without three-nucleon forces, the measurements indicate that three-nucleon forces make a significant contribution to the observables. This work indicates that three-body forces derived from static nuclear properties appear to be crucial to the description of dynamical properties.Comment: 8 pages 2 figures Latex, submitted to Phys. Rev. Letter

    Improved Laboratory Transition Probabilities for Ce II, Application to the Cerium Abundances of the Sun and Five r-process Rich, Metal-Poor Stars, and Rare Earth Lab Data

    Full text link
    Recent radiative lifetime measurements accurate to +/- 5% using laser-induced fluorescence (LIF) on 43 even-parity and 15 odd-parity levels of Ce II have been combined with new branching fractions measured using a Fourier transform spectrometer (FTS) to determine transition probabilities for 921 lines of Ce II. This improved laboratory data set has been used to determine a new solar photospheric Ce abundance, log epsilon = 1.61 +/- 0.01 (sigma = 0.06 from 45 lines), a value in excellent agreement with the recommended meteoritic abundance, log epsilon = 1.61 +/- 0.02. Revised Ce abundances have also been derived for the r-process-rich metal-poor giant stars BD+17 3248, CS 22892-052, CS 31082-001, HD 115444 and HD 221170. Between 26 and 40 lines were used for determining the Ce abundance in these five stars, yielding a small statistical uncertainty of 0.01 dex similar to the Solar result. The relative abundances in the metal-poor stars of Ce and Eu, a nearly pure r-process element in the Sun, matches r-process only model predictions for Solar System material. This consistent match with small scatter over a wide range of stellar metallicities lends support to these predictions of elemental fractions. A companion paper includes an interpretation of these new precision abundance results for Ce as well as new abundance results and interpretations for Pr, Dy and Tm.Comment: 84 pages, 8 Figures, 14 Tables; To appear in the Astrophysical Journal Supplemen

    New Rare Earth Element Abundance Distributions for the Sun and Five r-Process-Rich Very Metal-Poor Stars

    Get PDF
    We have derived new abundances of the rare-earth elements Pr, Dy, Tm, Yb, and Lu for the solar photosphere and for five very metal-poor, neutron-capture r-process-rich giant stars. The photospheric values for all five elements are in good agreement with meteoritic abundances. For the low metallicity sample, these abundances have been combined with new Ce abundances from a companion paper, and reconsideration of a few other elements in individual stars, to produce internally-consistent Ba, rare-earth, and Hf (56<= Z <= 72) element distributions. These have been used in a critical comparison between stellar and solar r-process abundance mixes.Comment: 48 pages, 11 figures, 12 tables: To appear in the Astrophysical Journal Supplemen
    corecore