781 research outputs found
A systematic review of local vulnerability to climate change: in search of transparency, coherence and comparability
Because vulnerability is a conceptual construct rather than a directly observable phenomenon,
most vulnerability assessments measure a set of “vulnerability indicators”. In order to identify
the core approaches and range of variation in the field, we conducted a systematic literature
review on local vulnerability to climate change. The systematic review entailed an
identification of frameworks, concepts, and operationalizations and a transparency assessment
of their reporting. Three fully defined relevant frameworks of vulnerability were identified:
IPCC, Patterns of Smallholder Vulnerability and Vulnerability as Expected Poverty.
Comparative analysis found substantial heterogeneity in frameworks, concepts and
operationalizations, making it impossible to identify patterns of climate vulnerability
indicators and determinants that have robust empirical support. If research measuring farmers’
vulnerability to climate change is to have any comparability, it needs greater conceptual
coherence and empirical validity. We recommend a systematic program of testing and
validating vulnerability measures before institutionalizing them in programmatic contexts
Poisson-Bracket Approach to the Dynamics of Nematic Liquid Crystals. The Role of Spin Angular Momentum
Nematic liquid crystals are well modeled as a fluid of rigid rods. Starting
from this model, we use a Poisson-bracket formalism to derive the equations
governing the dynamics of nematic liquid crystals. We treat the spin angular
momentum density arising from the rotation of constituent molecules about their
centers of mass as an independent field and derive equations for it, the mass
density, the momentum density, and the nematic director. Our equations reduce
to the original Leslie-Ericksen equations, including the inertial director term
that is neglected in the hydrodynamic limit, only when the moment of inertia
for angular momentum parallel to the director vanishes and when a dissipative
coefficient favoring locking of the angular frequencies of director rotation
and spin angular momentum diverges. Our equations reduce to the equations of
nematohydrodynamics in the hydrodynamic limit but with dissipative coefficients
that depend on the coefficient that must diverge to produce the Leslie-Ericksen
equations.Comment: 10 pages, to be published in Phys. Rev. E 72(5
A Preliminary Study on the Potential of Manuka Honey and Platelet-Rich Plasma in Wound Healing
Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, and a combination of PRGF and MH. Results. All three cell types demonstrated increases in cellular activity in the presence of PRGF, with further increases in activity seen in the presence of PRGF+MH. hDFs proved to be the most positively responsive cells, as they experienced enhanced proliferation, collagen matrix production, and migration into an in vitro wound healing model with the PRGF+MH-supplemented media. Conclusion. This preliminary in vitro study is the first to evaluate the combination of PRGF and Manuka honey, two products with the potential to increase regeneration individually, as a combined product to enhance dermal regeneration
A Preliminary Study on the Potential of Manuka Honey and Platelet-Rich Plasma in Wound Healing
Aim. The purpose of this study was to determine the in vitro response of cells critical to the wound healing process in culture media supplemented with a lyophilized preparation rich in growth factors (PRGF) and Manuka honey. Materials and Methods. This study utilized cell culture media supplemented with PRGF, as well as whole Manuka honey and the medical-grade Medihoney (MH), a Manuka honey product. The response of human fibroblasts (hDF), macrophages, and endothelial cells (hPMEC) was evaluated, with respect to cell proliferation, chemotaxis, collagen matrix production, and angiogenic potential, when subjected to culture with media containing PRGF, MH, Manuka honey, and a combination of PRGF and MH. Results. All three cell types demonstrated increases in cellular activity in the presence of PRGF, with further increases in activity seen in the presence of PRGF+MH. hDFs proved to be the most positively responsive cells, as they experienced enhanced proliferation, collagen matrix production, and migration into an in vitro wound healing model with the PRGF+MH-supplemented media. Conclusion. This preliminary in vitro study is the first to evaluate the combination of PRGF and Manuka honey, two products with the potential to increase regeneration individually, as a combined product to enhance dermal regeneration
Lattice Boltzmann Simulations of Liquid Crystal Hydrodynamics
We describe a lattice Boltzmann algorithm to simulate liquid crystal
hydrodynamics. The equations of motion are written in terms of a tensor order
parameter. This allows both the isotropic and the nematic phases to be
considered. Backflow effects and the hydrodynamics of topological defects are
naturally included in the simulations, as are viscoelastic properties such as
shear-thinning and shear-banding.Comment: 14 pages, 5 figures, Revte
Asymptotic Behavior for a Nematic Liquid Crystal Model with Different Kinematic Transport Properties
We study the asymptotic behavior of global solutions to hydrodynamical
systems modeling the nematic liquid crystal flows under kinematic transports
for molecules of different shapes. The coupling system consists of
Navier-Stokes equations and kinematic transport equations for the molecular
orientations. We prove the convergence of global strong solutions to single
steady states as time tends to infinity as well as estimates on the convergence
rate both in 2D for arbitrary regular initial data and in 3D for certain
particular cases
- …