390 research outputs found

    Superfluidity and spin superfluidity in spinor Bose gases

    Get PDF
    We show that spinor Bose gases subject to a quadratic Zeeman effect exhibit coexisting superfluidity and spin superfluidity, and study the interplay between these two distinct types of superfluidity. To illustrate that the basic principles governing these two types of superfluidity are the same, we describe the magnetization and particle-density dynamics in a single hydrodynamic framework. In this description spin and mass supercurrents are driven by their respective chemical potential gradients. As an application, we propose an experimentally accessible stationary state, where the two types of supercurrents counterflow and cancel each other, thus resulting in no mass transport. Furthermore, we propose a straightforward setup to probe spin superfluidity by measuring the in-plane magnetization angle of the whole cloud of atoms. We verify the robustness of these findings by evaluating the four-magnon collision time, and find that the time scale for coherent (superfluid) dynamics is separated from that of the slower incoherent dynamics by one order of magnitude. Comparing the atom and magnon kinetics reveals that while the former can be hydrodynamic, the latter is typically collisionless under most experimental conditions. This implies that, while our zero-temperature hydrodynamic equations are a valid description of spin transport in Bose gases, a hydrodynamic description that treats both mass and spin transport at finite temperatures may not be readily feasible

    Hydrodynamic modes of partially condensed Bose mixtures

    Full text link
    We generalize the Landau-Khalatnikov hydrodynamic theory for superfluid helium to two-component (binary) Bose mixtures at arbitrary temperatures. In particular, we include the spin-drag terms that correspond to viscous coupling between the clouds. Therefore, our theory not only describes the usual collective modes of the individual components, e.g., first and second sound, but also results in new collective modes, where both constituents participate. We study these modes in detail and present their dispersions using thermodynamic quantities obtained within the Popov approximation

    Quantitative Probe of Pairing Correlations in a Cold Fermionic Atom Gas

    Full text link
    A quantitative measure of the pairing correlations present in a cold gas of fermionic atoms can be obtained by studying the dependence of RF spectra on hyperfine state populations. This proposal follows from a sum rule that relates the total interaction energy of the gas to RF spectrum line positions. We argue that this indicator of pairing correlations provides information comparable to that available from the spin-susceptibility and NMR measurements common in condensed-matter systems.Comment: 5 pages, 1 figur

    Spin Hall mode in a trapped thermal Rashba gas

    Get PDF
    We theoretically investigate a two-dimensional harmonically-trapped gas of identical atoms with Rashba spin-orbit coupling and no interatomic interactions. In analogy with the spin Hall effect in uniform space, the gas exhibits a spin Hall mode. In particular, in response to a displacement of the center-of-mass of the system, spin-dipole moment oscillations occur. We determine the properties of these oscillations exactly, and find that their amplitude strongly depends on the spin-orbit coupling strength and the quantum statistics of the particles

    Quantum rotor model for a Bose-Einstein condensate of dipolar molecules

    Full text link
    We show that a Bose-Einstein condensate of heteronuclear molecules in the regime of small and static electric fields is described by a quantum rotor model for the macroscopic electric dipole moment of the molecular gas cloud. We solve this model exactly and find the symmetric, i.e., rotationally invariant, and dipolar phases expected from the single-molecule problem, but also an axial and planar nematic phase due to many-body effects. Investigation of the wavefunction of the macroscopic dipole moment also reveals squeezing of the probability distribution for the angular momentum of the molecules

    Spin-wave amplification and lasing driven by inhomogeneous spin transfer torques

    Full text link
    We show that an inhomogeneity in the spin-transfer torques in a metallic ferromagnet under suitable conditions strongly amplifies incoming spin waves. Moreover, at nonzero temperatures the incoming thermally occupied spin waves will be amplified such that the region with inhomogeneous spin transfer torques emits spin waves spontaneously, thus constituting a spin-wave laser. We determine the spin-wave scattering amplitudes for a simplified model and set-up, and show under which conditions the amplification and lasing occurs. Our results are interpreted in terms of a so-called black-hole laser, and could facilitate the field of magnonics, that aims to utilize spin waves in logic and data-processing devices.Comment: 5 pages, 4 figure

    Spin drag Hall effect in a rotating Bose mixture

    Full text link
    We show that in a rotating two-component Bose mixture, the spin drag between the two different spin species shows a Hall effect. This spin drag Hall effect can be observed experimentally by studying the out-of-phase dipole mode of the mixture. We determine the damping of this mode due to spin drag as a function of temperature. We find that due to Bose stimulation there is a strong enhancement of the damping for temperatures close to the critical temperature for Bose-Einstein condensation.Comment: 1 figur

    Nonlocal Spin Transport as a Probe of Viscous Magnon Fluids

    Get PDF
    Magnons in ferromagnets behave as a viscous fluid over a length scale, the momentum-relaxation length, below which momentum-conserving scattering processes dominate. We show theoretically that in this hydrodynamic regime viscous effects lead to a sign change in the magnon chemical potential, which can be detected as a sign change in the nonlocal resistance measured in spin transport experiments. This sign change is observable when the injector-detector distance becomes comparable to the momentum-relaxation length. Taking into account momentum- and spin-relaxation processes, we consider the quasiconservation laws for momentum and spin in a magnon fluid. The resulting equations are solved for nonlocal spin transport devices in which spin is injected and detected via metallic leads. Because of the finite viscosity we also find a backflow of magnons close to the injector lead. Our work shows that nonlocal magnon spin transport devices are an attractive platform to develop and study magnon-fluid dynamics

    Thermally-Assisted Current-Driven Domain Wall Motion

    Full text link
    Starting from the stochastic Landau-Lifschitz-Gilbert equation, we derive Langevin equations that describe the nonzero-temperature dynamics of a rigid domain wall. We derive an expression for the average drift velocity of the domain wall as a function of the applied current, and find qualitative agreement with recent magnetic semiconductor experiments. Our model implies that at any nonzero temperature the average domain-wall velocity initially varies linearly with current, even in the absence of non-adiabatic spin torques.Comment: 4 pages, 2 figure

    Interaction effects on dynamic correlations in non-condensed Bose gases

    Full text link
    We consider dynamic, i.e., frequency-dependent, correlations in non-condensed ultracold atomic Bose gases. In particular, we consider the single-particle correlation function and its power spectrum. We compute this power spectrum for a one-component Bose gas, and show how it depends on the interatomic interactions that lead to a finite single-particle relaxation time. As another example, we consider the power spectrum of spin-current fluctuations for a two-component Bose gas and show how it is determined by the spin-transport relaxation time.Comment: 9 pages, 3 figure
    • …
    corecore