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We theoretically investigate a two-dimensional harmonically trapped gas of identical atoms with Rashba
spin-orbit coupling and no interatomic interactions. In analogy with the spin Hall effect in uniform space, the
gas exhibits a spin Hall mode. In particular, in response to a displacement of the center of mass of the system,
spin-dipole moment oscillations occur. We determine the properties of these oscillations exactly and find that
their amplitude strongly depends on the spin-orbit-coupling strength and the quantum statistics of the particles.
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I. INTRODUCTION

Collective behavior provides an important pathway towards
the measurement of various physical properties in a multitude
of systems. In particular, material properties pertaining to
transport often leave an imprint in the collective motion
of the system. For example, the charge-carrier density can
be determined by observing the Hall response [1]. Various
magnetic oscillations allow us to measure the effective mass
of carriers, as well as to quantify the level of disorder in the
material [2]. The speed of sound in a material allows us to
access information about such mechanical properties as shear
modulus, density, and compressibility [3]. Recently, vorticity
has been identified as a hallmark of viscous electron transport
in graphene [4,5].

When it comes to ultracold atomic gas systems, collective
modes have been at the center of the field since the very first
experiments [6,7]. By “collective modes” in this context it is
meant that the system is perturbed as a whole. The response
to this perturbation is typically deduced from measurements
that probe the full system and not its constituents, even in the
absence of interparticle interactions. Arguably, the simplest of
such modes is the center-of-mass oscillation (also known as
the dipole mode) of the whole cloud of atoms in a harmonic
trap. Kohn’s theorem states that this mode does not decay and
is not affected by interactions and that its frequency equals that
of the trap [8,9]. This theorem does not apply in the presence
of spin-orbit coupling (SOC). SOC breaks Galilean invariance
[10–13], as demonstrated by the altered frequency of the dipole
mode [14,15]. Another case when Kohn’s theorem does not
apply is an out-of-phase oscillation of two interacting species
of atoms in the same trap, i.e., a so-called (pseudo)spin-dipole
oscillation. To probe this mode, a species-dependent force
displaces the clouds of the two species with respect to each
other while keeping the center of mass of the whole system at
the bottom of the trap. Such oscillations have been observed in
various experiments with bosons [16–19], fermions [20,21],
and mixtures of bosons and fermions [22–24].

A similar excitation in response to a spin-independent
force known as the intrinsic spin Hall effect has been central

*jogundas.armaitis@tfai.vu.lt

to the field of spintronics [25,26]. There, a transverse spin
current is generated in response to a longitudinal charge
current in a uniform system. This occurs generically due to
the presence of (Rashba [27] or Dresselhaus [28]) SOC since
the spin of different momentum states precesses differently
in response to a spin-independent force. Building upon this
knowledge, we analyze such a situation in the presence of
a trapping potential, where one expects a similar response
to occur (Fig. 1). Contrary to the spintronics nomenclature,
in the ultracold-atom literature, the spin Hall effect almost
[29] always refers to the two eigenstates of a system with
one-dimensional (also known as equal Rashba-Dresselhaus)
SOC experiencing opposite transverse forces in the absence
of spin precession [30,31]. Spin is correspondingly conserved
in one direction in these ultracold-atom experiments. How-
ever, this does not have to be the case in general. Indeed,
spin is typically not conserved in solid-state spintronics
experiments [26].

Several different schemes for inducing two-dimensional
SOC in ultracold-atom systems have been proposed [32–35],
and at least one of them has been experimentally realized
[36]. Hence, we are motivated to investigate the collective
modes of a harmonically confined gas in the presence of a two-
dimensional SOC. Furthermore, since all the experimentally
realistic two-dimensional SOC schemes involve some degree
of heating [10,11,37], at least the early experiments are likely
to operate in the thermal-gas regime. Therefore, we study
quantum degenerate thermal, i.e., noncondensed, fermions
and bosons. In this regime energy scales set by various
scattering processes (interparticle interactions) can be made
small compared to the thermal energy, e.g., by employing
a Feshbach resonance [38], allowing us to neglect interaction
effects in this study. Moreover, we do not consider the constant
Zeeman terms that break the time-reversal symmetry and
thereby lead to an anomalous Hall effect [39]. This allows
us to stay in the regime where the transverse Hall response
exists only in the spin channel.

Our main finding is that a collective mode in the trap
analogous to the spin Hall response in the uniform system
is indeed present. We call this mode the spin Hall mode. The
amplitude of this response depends in a nontrivial way on the
SOC strength and is different for Bose and Fermi particles (see
Figs. 4 and 6 below).
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FIG. 1. Spin Hall mode: due to the spin Hall effect, a Rashba
spin-orbit-coupled system (gray ellipsoid) in a harmonic trap (thick
parabola) exhibits oscillations of the transverse spin-dipole moment
in response to a displacement away from the bottom of the trap.
During these oscillations the whole cloud swings back and forth
along the axis of displacement, as indicated by the thin arrow.
More importantly, the transverse spin-dipole moment also oscillates,
whereas the total spin of the cloud remains zero. This is visualized
by the alternating separation of the average positions of the spin-up
(red) and spin-down (blue) particles. The spin quantization axis is
perpendicular to the spin-orbit-coupling plane, whereas the spin-
separation axis is perpendicular to both the spin axis and the direction
of displacement.

This paper is organized as follows. In Sec. II we present
the problem and introduce the notation. We treat the weak-
SOC and strong-SOC limits analytically for the lowest-lying
states in Sec. III. In Sec. IV we present an exact numerical
treatment of both bosonic and fermionic degenerate gases at
nonzero temperature. Finally, Sec. V summarizes our results
and provides some directions for future work.

II. THEORETICAL FRAMEWORK

A. System

The Hamiltonian of our system

H = HK + HR + HT (1)

consists of the kinetic-energy term HK , the Rashba SOC term
HR , and the harmonic trapping potential HT . It is assumed
from the outset that a steep trapping potential in the z direction
dominates all other energy scales, allowing us to concentrate
on the dynamics in the x-y plane. It is convenient to treat the
problem in units where the reduced Planck constant, particle
mass, and trap frequency are set to unity, h̄ = M = ωT = 1.
In these units,

HK = p2/2 = (
p2

x + p2
y

)
/2, (2)

HT = x2/2 = (x2 + y2)/2, (3)

where vectors are denoted by the bold font, x is a vector
of coordinate operators, and p is a vector of momentum
operators. We keep identity matrices in spin space implicit
throughout the article. The Rashba SOC Hamiltonian is

HR = v(σxpy − σypx), (4)

where v is the Rashba SOC strength and σi are the Pauli
matrices. Using polar coordinates in the plane, px = p cos θ

and py = p sin θ , as well as introducing the spin raising and
lowering operators

σx = σ+ + σ−, (5)

iσy = σ+ − σ−, (6)

the SOC part of the Hamiltonian can be written as

HR = ipv(σ+e−iθ − σ−eiθ ). (7)

The two eigenspinors of HR , namely,

χ± = 1√
2

(±ie−iθ

1

)
, (8)

depend only on the direction of the momentum in the plane and
not on its magnitude. In the absence of the trap, the energies
of the two branches corresponding to these eigenspinors are

E± = p2

2
± pv. (9)

The Hamiltonian H and its various extensions have already
been the subject of several investigations. Most of the work
has concentrated on the study of Bose-Einstein condensates
and their dynamics [40–46]. Some attention has been paid to
the interplay between interactions and SOC [47–51], as well
as rotations and SOC [52,53]. Moreover, various properties of
this system in anisotropic (deformed) trapping potentials have
been investigated [54–56]. Regarding dynamics, it was shown
that a sudden ramp up of the SOC strength initiates collapse
and revival dynamics of the total magnetization for a Fermi
gas [57]. Anisotropy in the SOC part of the Hamiltonian leads
to chaotic behavior [58].

H in Eq. (1) is also known as the E × ε Jahn-Teller
Hamiltonian, especially in the context of chemical, molecular,
and condensed-matter physics [59]. Larson and coworkers
have studied the anomalous Hall effect [60] and the spin Hall
effect [61] in that system. In particular, they have shown how
the intrinsic asymmetry of the dynamics of the Li3 molecule
can be assigned to a spin Hall effect by investigating the
evolution of a spin-imbalanced Gaussian wave packet at zero
temperature [61]. In contrast, in our paper we concentrate on
the observables relevant to ultracold-atom experiments and
account for particle statistics and thermal effects.

B. Moments and modes

In general, one may excite the system using an operator O1

and witness the response of the system to this perturbation in
the evolution of the expectation values of an operator O2. The
response to excitations is intimately related to the eigenmodes
of the system.

In a trapped system of ultracold atoms, a natural excitation
is a small shift of the center of mass of the system (or,
equivalently, the bottom of the trapping potential). Such a
perturbation with an infinitesimal amplitude |x0| � 1 in a
direction x̂0 = x0/|x0| is described by a translation operator

T = 1 − i p · x0. (10)

In general, this excitation may result in both a longitudinal
response (along x̂0) and a transverse response (along x̂⊥

0 ,
which is perpendicular to x̂0).

053625-2
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Arguably, the simplest observable is the center-of-mass
position, namely, 〈x〉. In a trapped system in the absence of
SOC, the response to T is fully described by a single-frequency
oscillation in the longitudinal channel of the center-of-mass
position of the cloud, 〈x · x̂0〉, and is known as the dipole
mode or Kohn’s mode, as described in the Introduction. In
the presence of SOC this mode is significantly modified [14],
as will be demonstrated in the subsequent discussion. The
center-of-mass response in the transverse channel, 〈x · x̂⊥

0 〉,
corresponds to the anomalous Hall effect. It requires a nonzero
Berry curvature in momentum space, which can, for instance,
be achieved by adding a Zeeman term to our SOC Hamiltonian.
An oscillation of the center-of-mass position transverse to the
direction of the excitation is therefore called the anomalous
Hall mode [39].

Even though expectation values of various other operators
are also accessible to ultracold-atom experiments (see, e.g.,
Ref. [62]), we limit our discussion to the spin-dipole moment
〈xiσj 〉. As mentioned earlier, it is possible to initialize an
ultracold-atom system in a state with a nonzero spin-dipole
moment by separating out the two spin states in position space
[16,17,19–24]. Subsequently, a weakly interacting system in
the absence of SOC exhibits spin-dipole oscillations due to
harmonic confinement, known as the spin-dipole mode.

From the perspective of spintronics, a transverse spin-
dipole moment or spin accumulation 〈x · x̂⊥

0 σz〉, which
emerges in response to a spin-independent perturbation T or
voltage, is known as the spin Hall effect [25]. Here we consider
exactly such a setup. Namely, we start from a state with
a vanishing spin-dipole moment, apply a spin-independent
perturbation [Eq. (10)], and subsequently observe oscillations
in both the longitudinal center-of-mass position and transverse
spin-dipole moment. It is therefore natural to call this collective
oscillation the spin Hall mode. In what follows, we investi-
gate this spin Hall mode, focusing on the time dependence of
the spin-dipole moment. In particular, we are interested in the
magnitude of the spin-dipole moment, which builds up in time.

III. ANALYTIC RESULTS

In this section we present an analytic solution for the
ground-state response to driving when the SOC is either weak
or strong compared to the harmonic trap. Due to time-reversal
invariance, all single-particle states are doubly degenerate
(Kramer’s pairs). Hence, this system has two degenerate
many-body ground states, |g1〉 and |g2〉, regardless of the
strength of the SOC. Considering different occupations for
these two states breaks the time-reversal symmetry and results
in a spurious anomalous Hall effect. We thus assume that
these two ground states have equal occupation. Furthermore,
we consider statistical mixtures of states throughout the paper
and not their quantum-mechanical superpositions, as we focus
on thermal excitations.

We follow the unitary evolution of each of the two
degenerate ground states of the system after applying an
infinitesimal translation operator

T = 1 − ipxx0 (11)

in the x direction. In general, a convenient method to
implement unitary time evolution in the Schrödinger picture

is projecting the translated state onto the eigenbasis of the full
Hamiltonian H . To this end, we define the projection operator
Pj = |j 〉〈j | with respect to the eigenstate |j 〉 of H . We are
interested in two types of response. First, we consider the
center-of-mass position. For a single state |s〉, the evolution of
the average position is given by

〈x〉s ≡
∑
j,k

e−i(Ek−Ej )t 〈s|T †P†
j xPkT |s〉, (12)

and therefore, for the two ground states we have

〈x〉 = 1

2

∑
s=g1,g2

〈x〉s , (13)

where the factor of 1/2 enters as we consider a mixture of both
ground states with equal probability. In the absence of SOC,
this expectation value oscillates with the trap frequency ωT .
Second, we investigate the spin-dipole moment, the evolution
of which for a state |s〉 is

〈yσz〉s ≡
∑
j,k

e−i(Ek−Ej )t 〈s|T †P†
j yσzPkT |s〉, (14)

and hence, for the two ground states we have

〈yσz〉 = 1

2

∑
s=g1,g2

〈yσz〉s . (15)

The spin-dipole moment is excited only by the center-of-mass
displacement in the presence of SOC. These two expectation
values behave qualitatively differently in the weak- and strong-
SOC regimes. This is expected since by going from weak to
strong SOC, the system undergoes a dimensional reduction
from two-dimensional (2D) to effectively one-dimensional
(1D) dynamics (see Ref. [63] and references therein for more
details). We consider this behavior in detail below.

A. Weak SOC

In the weak-SOC limit v � 1 a natural basis for our
problem consists of the two-dimensional harmonic oscillator
eigenstates |n,m,ms〉, where n is the principal quantum
number, m is the angular momentum quantum number, and
ms is the spin projection quantum number. Nondegenerate
perturbation theory can be employed in this case since m + ms

is a good quantum number [48]. Since there are two small
parameters, x0 � 1 and v � 1, capturing the response to the
lowest order is especially straightforward in this regime. Thus,
it is sufficient to consider the second-order energy correction
due to HR ,

�En,m,ms
=

En,m �=En′ ,m′∑
n′,m′,m′

s

|〈n,m,ms |HR|n′,m′,m′
s〉|2

En,m − En′,m′
. (16)

As the translation operator does not commute with the
Hamiltonian, it couples the ground state |0,0,ms〉 to the states
|0,±1,ms〉, and the following corrections are required [48]:

�E0,0,↑ = −v2, �E0,1,↑ = −2v2, �E0,−1,↑ = 0, (17)

�E0,0,↓ = −v2, �E0,1,↓ = 0, �E0,−1,↓ = −2v2. (18)
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FIG. 2. Center-of-mass position and spin-dipole moment oscil-
lations (spin Hall mode) as a response to displacement of the two
ground states along the x direction with the displacement amplitude
x0 in the weak SOC regime (v = 1/10). We compare exact numerical
results (x0 = 1/100, blue solid line; see Sec. IV for more details) to the
analytical results in Eqs. (19) and (20) (infinitesimal x0, yellow dashed
line) for ten trap periods. Fourier transforming these signals and
restoring dimensions yields two peaks at the energies h̄ωT ± Mv2.

We now take the 2D harmonic oscillator eigenenergies with
second-order perturbative corrections due to HR in addition to
the unperturbed 2D harmonic oscillator eigenstates. Expand-
ing to the lowest nonvanishing correction, we obtain

〈x〉 = x0 cos t cos v2t, (19)

〈yσz〉 = −x0 cos t sin v2t (20)

in this limit. These expressions are unaffected by including
corrections to the eigenfunctions up to the second order.
Hence, taking a Fourier transform of either 〈x〉 or 〈yσz〉
and restoring dimensions yields two peaks at the energies
h̄ωT ± Mv2. Note, however, that in the limit of weak SOC,
increasingly long observation times are required in order to
achieve a resolution sufficient to distinguish the two peaks
in the Fourier spectrum of this signal. Therefore, it might
be more useful to analyze the response directly in the time
domain. We compare these analytical results with a numerical
simulation for v = 1/10 in Fig. 2. Note that in this weak-SOC
regime, center-of-mass oscillations occur around the bottom
of the trap with approximately the trap frequency. Here SOC
introduces a modulation with a frequency v2. The spin-dipole
response is shifted by a phase of π/2 with respect to the
center-of-mass oscillation. The amplitude of the spin-dipole
response is the same as the amplitude of the center-of-mass
oscillation for the two ground states in this v � 1 regime.
However, note that the spin-dipole moment takes a long time
to build up when v is small, practically limiting the magnitude
of the response (see Fig. 2).

B. Strong SOC

In this section we apply the procedure of dimensional
reduction pioneered in the field of topological insulators [63]
to our system. It allows us to obtain the spectrum and the wave
functions explicitly in the strong-SOC regime 1/v � 1. The
spectrum of the system in this limit has already been presented
in, e.g., Ref. [41].

In preparation for treating the problem in the strong-SOC
regime, it is convenient to write down the Schrödinger equation

in momentum space,{
p2

2
+ ivp(σ+e−iθ − σ−eiθ )

− 1

2

(
1

p
∂p[p∂p]

)
− 1

2

1

p2
∂2
θ

}

 = E
. (21)

We now make an ansatz


 = ψ+(p)χ+(θ )e−imθ + ψ−(p)χ−(θ )e−imθ , (22)

which allows us to see that different m states are not coupled
since

−∂2
θ (χ±e−imθ ) =

(
m[m + 1] + 1

2

)
χ±e−imθ

−
(

m + 1

2

)
e−imθχ∓e−imθ (23)

and [
p2

2
+ ivp(σ+e−iθ − σ−eiθ )

]



= E+ψ+χ+e−imθ + E−ψ−χ−e−imθ . (24)

Projecting Eq. (21) to the two branches yields

E±ψ± − 1

2

(
1

p
∂p[p∂pψ±]

)

+ 1

2p2

[(
m[m + 1] + 1

2

)
ψ± −

(
m + 1

2

)
ψ∓

]
= Eψ±,

(25)

where E± was defined in Eq. (9). Note that all the consider-
ations up to this point have been exact. Now we specialize to
the strong-SOC regime, where the two branches are separated
by a large energy gap, save for the p = 0 point. Relying on
this fact, we assume that the upper branch is empty, ψ+ = 0,
while the lower branch is described by the wave function

ψ− = f (p)/
√

p. (26)

The Schrödinger equation for f (p) thus is

E−f − f

8p2
− 1

2
∂2
pf + 1

2p2

(
m[m + 1] + 1

2

)
f = Ef.

(27)

In order to investigate the low-lying states close to the Rashba
ring p = v, we complete the square,

− 1

2
∂2
pf +

(
p2

2
− pv + v2

2

)
f − f

8v2
− v2

2
f

+ 1

2p2

(
m[m + 1] + 1

2

)
f = Ef, (28)

and notice that the first two terms on the left-hand side describe
a one-dimensional harmonic oscillator. For the remaining
terms, we approximate p  v and obtain the following
spectrum:

Eνm =
(

ν + 1

2

)
− v2

2
+ 1

2v2

(
m[m + 1] + 1

4

)
, (29)
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where ν is the quantum number of the 1D harmonic oscillator.
Note that this spectrum preserves the degeneracy of the
Kramers pairs, and in particular there are two ground states
with the energy

E00 = E0−1 = 1

2
− v2

2
+ 1

8v2
. (30)

This spectrum has been shown to match the strong-SOC
spectrum for the low-energy states very well [41,45]. In this
approximation, momentum-state wave functions are


νm = fν(p − v)
1√
2p

(−ie−iθ

1

)
e−imθ

√
2π

, (31)

where

fν(p) = 1√
2νν!

1

π1/4
e−p2/2Hν(p) (32)

are the 1D harmonic oscillator eigenstates and Hν denotes the
Hermite polynomial.

We now apply the translation operator in the x direction on
the two ground states,

T 
00 = 
00 − ix0

2

(

11√

2
+ 
1−1√

2
+ v
01 + v
0−1

)
,

(33)

T 
0−1 = 
0−1 − ix0

2

(

10√

2
+ 
1−2√

2
+ v
00 + v
0−2

)
,

(34)

where we have used one of the Hermite function recursion
relations, namely,

pfn(p) =
√

n

2
fn−1(p) +

√
n + 1

2
fn+1(p). (35)

Subsequently, Eqs. (13) and (15) yield

〈x〉 = x0

4

(
cos t + 2 cos

t

v2
+ cos

[
t + t

v2

])
, (36)

〈yσz〉 = −x0

4
sin

t

v2
. (37)

Taking a Fourier transform of the 〈x〉 signal, discarding very
small frequencies, and restoring dimensions yield two peaks
at the energies h̄ωT and h̄ωT + 1/Mv2. We compare these
analytical results with a numerical simulation for v = 10 in
Fig. 3. Note that in this strong SOC regime, center-of-mass
oscillations are qualitatively different from the dipole mode
in the absence of SOC. In particular, here the center-of-mass
position oscillates around the initial position x0 and not
the bottom of the trap [46], which is ultimately due to the
physical momentum being substantially different from the
canonical momentum [64]. Note further that the amplitude
of the spin-dipole response is only one quarter of that of
center-of-mass oscillations.

IV. EXACT NUMERICAL RESULTS

While at zero temperature for small perturbation amplitude
x0 � 1 and extreme SOC strengths v � 1 and v � 1 we have
managed to obtain analytical results, other regimes remain
unexplored. To address this, we turn to numerically evaluating

FIG. 3. Center-of-mass position and spin-dipole moment oscil-
lations (spin Hall mode) as a response to displacement of the two
ground states along the x direction with the displacement amplitude
x0 in the strong SOC regime (v = 10). We compare exact numerical
results (x0 = 1/100, blue solid line; see Sec. IV for more details) to
the analytical results in Eqs. (36) and (37) (infinitesimal x0, yellow
dashed line) for ten trap periods. Fourier transforming the 〈x〉 signal,
discarding very small frequencies, and restoring dimensions yield
two peaks at the energies h̄ωT and h̄ωT + 1/Mv2.

the evolution of the system. Noninfinitesimal translation
amplitudes are taken into account by employing the displaced
number states [65]. In this way, we can cover perturbation
amplitudes and SOC strengths of any magnitude. We consider,
moreover, nonzero temperature.

We now investigate the amplitude of the spin-dipole
moment oscillations in response to a small (one tenth of the
trap length) displacement of the center-of-mass position of
a system of either bosons or fermions. We limit the time of
evolution to ten trap periods to account for the finite lifetime
of ultracold atomic samples in the experiment. In order to
explore qualitative effects of statistics and temperature on the
spin Hall mode, we consider a system of 100 particles at three
temperatures, kBT = 1/10,1,3/2 in the units of trap energy,
where kB is the Boltzmann constant. The number of particles
is limited by computational requirements.

In practice, we numerically diagonalize the Hamiltonian to
obtain the spectrum and the eigenstates. We fix the number of
particles N = 100 and solve

N =
∑

s

1

exp ([Es − μ]/kBT ) ∓ 1
(38)

for the chemical potential μ, where the sum runs over the
eigenstate energies Es and the upper (lower) sign corresponds
to bosonic (fermionic) statistics. Subsequently, we compute
how the expectation values evolve in time:

〈x〉 = 1

N

∑
s

〈x〉s
exp ([Es − μ]/kBT ) ∓ 1

, (39)

〈yσz〉 = 1

N

∑
s

〈yσz〉s
exp ([Es − μ]/kBT ) ∓ 1

, (40)

where the time-dependent center-of-mass position and spin-
dipole moment for a state s, namely, 〈x〉s and 〈yσz〉s , have
been defined in Eqs. (12) and (14). We emphasize that these
quantities are evaluated exactly in our noninteracting system
[66]. Since the results for bosons and fermions are quite
different, we present them one after another.

For bosons the amplitude of the response is given in Fig. 4.
For all investigated temperatures, the plot can be roughly
divided into three parts: weak, strong, and intermediate SOC
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FIG. 4. Maximum amplitude of the transverse spin-dipole mo-
ment 〈yσz〉 for 100 bosons, normalized to the initial center-of-mass
displacement amplitude x0 (equal to 1/10 of the trap length), observed
over the time interval of ten trap periods. Three temperatures in the
units of the trap energy have been investigated: kBT = 0.1 (blue
triangles), 1 (orange diamonds), and 1.5 (green circles). At weak
and strong SOC, the response can be described analytically at zero
temperature [red solid curves, Eqs. (41) and (37); see Sec. IV for
more details].

strength. Whereas the explanation of the first two regimes is
relatively straightforward, the same cannot be said about the
intermediate regime of 0.6 � v � 7. In the limit of weak SOC
(small v), the evolution of the spin-dipole moment displays
a very weak temperature dependence and can be described
analytically (Sec. III A). This approximation is accurate only
up to the first peak, which occurs at v  0.15. However, by
employing Eq. (20) as an ansatz we are able to fit the response
up to v  0.6. Explicitly, we use

〈yσz〉 = −a(v) cos t sin f (v) t, (41)

where now the amplitude a and the frequency f depend on
the SOC strength (see Fig. 5, left). For small v, the response
is virtually independent of temperature in the range that we
have investigated, as almost exclusively the two degenerate
ground states are occupied. This is because the spectrum in this
regime consists of weakly perturbed harmonic oscillator states,
therefore resulting in exponentially suppressed occupation of
excited states for bosons. We are also able to explain the
results in the limit of strong SOC v � 7 at low temperature,
as there the spin-dipole moment approximately follows the

FIG. 5. Left: the amplitude a (blue solid line) and the frequency
f (yellow dashed line) fits for the spin-dipole moment ansatz in
Eq. (41) of 100 bosons. Right: the center-of-mass position (blue
solid line) and the transverse spin-dipole moment (yellow dashed
line; multiplied by a factor of 5 for clarity) for 100 bosons at v = 1
(intermediate SOC strength), where the amplitude of the spin-dipole
moment response shows a local minimum for bosonic particles at all
considered temperatures.

evolution described in Eq. (37). However, in this regime the
match is not perfect at any nonzero temperature, and it worsens
as the system is heated. This is because the gaps in the
spectrum decrease for moderate SOC strength due to effective
dimensional reduction [see Eq. (29)], and thus, excited states
are readily occupied. Note that this is also the reason why
the effect of temperature on the response is the strongest for
moderately strong SOC.

To reiterate, in the strong (v � 1) SOC regime, Eq. (26)
holds; that is, the wave function is accurately described by
ψ−. That is, even though there are two branches of states
in the system originating from the two dispersion branches
in the absence of a trap, the upper branch is empty, as the
energy gap between these two branches is large. Furthermore,
in this regime, p  v is a good approximation, and also the
last term in the dispersion in Eq. (29) becomes small. The
latter means the degeneracy of the lowest-energy manifold
becomes large. Thus, either bosons or fermions primarily
occupy this lowest-energy ν = 0 manifold. However, the gaps
between the manifolds are finite (equal to 1 in our units), and
thus, higher-energy manifolds can also be thermally occupied,
suppressing the response as temperature increases. This is to be
contrasted with the moderate-SOC-strength situation, where
the 1/v2 term in the dispersion cannot be neglected. Therefore,
the lowest-energy manifold degeneracy is less pronounced,
and thus, the occupation of a large number of states is strongly
dependent on temperature. This in turn explains the strong
dependence of the response on temperature for moderate SOC
strength in Fig. 4.

When several states are occupied, the behavior becomes
more complicated. In particular, since different-energy states
contribute oscillations of different frequencies and phases to
the response, it is not straightforward to explain the minimum
and the maximum shown in Fig. 4 for the intermediate values
of v. To illustrate the typical response in this intermediate
regime, in Fig. 5 (right) we show the evolution of the transverse
spin-dipole moment for v = 1, which is the local response
minimum for all considered temperatures.

Occupation of several states is particularly relevant for
fermions (Fig. 6). In that case, the interference of responses
of various states plays a crucial role, resulting in several local
minima and maxima, which become sharper as temperature
decreases. However, the qualitative structure of the response
is similar to bosons, in the sense that there is a global maximum
at v  0.13 (compare to v  0.15 for bosons), and the response
becomes progressively weaker for stronger SOC. In the region
3 < v < 10 the response is below 0.05 and decays very slowly
with increasing SOC strength for all considered temperatures,
and hence, we have excluded this region from the plot.

All the results reported thus far are in the limit of
small initial displacement. The response of the system is
nonlinear in the sense that the maximum amplitude of the
spin-dipole moment oscillation strongly depends on the initial
displacement (Fig. 7). Furthermore, we again emphasize that
the dynamics described often follows the collapse and revival
type of behavior due to many states involved. Therefore, in
order to investigate the effects of various parameters on the
response (such as SOC strength, center-of-mass displacement
amplitude, and temperature), it is important to keep the
observation time constant.
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FIG. 6. Maximum amplitude of the transverse spin-dipole mo-
ment 〈yσz〉 for 100 fermions, normalized to the initial center-of-mass
displacement amplitude x0 (equal to 1/10 of the trap length), observed
over the time interval of ten trap periods. Three temperatures in the
units of the trap energy have been investigated: kBT = 0.1 (blue
triangles), 1 (orange diamonds), and 1.5 (green circles). The points at
each temperature are joined by a line of the corresponding color for
clarity.

V. SUMMARY AND OUTLOOK

We have investigated a harmonically trapped system with
Rashba SOC and no interparticle interactions. In particular, we
have studied the response of the system to a small displacement
away from the bottom of the trap. We found that in addition
to the expected center-of-mass oscillations, a dynamics of
the spin-dipole moment is induced. This spin-dipole moment
dynamics is transverse to the displacement direction and is
analogous to the spin Hall effect. Therefore, we dubbed this
collective mode the spin Hall mode.

Furthermore, we have performed an exact numerical study
of the qualitative effects of temperature and statistics on the
amplitude of the spin-dipole moment oscillations. For bosons
in the weak-SOC and strong-SOC limits, the response is
captured by analytic expressions. In the intermediate-SOC
region for bosons, as well as for fermions at any SOC strength,
the spin-dipole moment oscillations appear anharmonic. Even
though the amplitude of these oscillations as a function of
the SOC strength is different for bosons and fermions, we
have found that in regions where the spin Hall response is the
strongest, the effects of temperature and statistics are weak.
We hope that our analysis will stimulate experimental work on
collective modes of ultracold atomic gases with 2D SOC.

In future work, building on more formal results [67], it
might be possible to extend the simple analytical treatment

FIG. 7. Maximum normalized amplitude of the transverse spin-
dipole moment 〈yσz〉 for 100 bosons (solid blue line) and fermions
(dashed yellow line) at a temperature of kBT = 1/10 and SOC
strength v = 0.15 observed over the time interval of ten trap periods
as a function of the initial center-of-mass displacement amplitude x0.

presented here. Furthermore, as some of the realistic Rashba
SOC implementation schemes [33] might result in various
anisotropies, it is both feasible [54–56] and desirable to
investigate the effects of such anisotropies on the spin Hall
mode in an approach similar to the one presented here. In
order to make quantitative predictions for experiments, in
addition to anisotropies, careful accounting of the nonlinear
behavior of the system is important. Exploring interaction
effects, for example, in a mean-field (Hartree-Fock) type of
treatment is another promising research direction. Finally, one
could investigate how the results presented here are altered in
a Bose-Einstein-condensed phase or in the presence of pair
condensation.
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[11] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman,
Rep. Prog. Phys. 77, 126401 (2014).

[12] Y.-C. Zhang, Z.-Q. Yu, T. K. Ng, S. Zhang, L. Pitaevskii, and S.
Stringari, Phys. Rev. A 94, 033635 (2016).

[13] S. Stringari, Phys. Rev. Lett. 118, 145302 (2017).
[14] J.-Y. Zhang, S.-C. Ji, Z. Chen, L. Zhang, Z.-D. Du, B. Yan,

G.-S. Pan, B. Zhao, Y.-J. Deng, H. Zhai, S. Chen, and J.-W. Pan,
Phys. Rev. Lett. 109, 115301 (2012).

[15] Z. Chen and H. Zhai, Phys. Rev. A 86, 041604 (2012).
[16] D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and

E. A. Cornell, Phys. Rev. Lett. 81, 1539 (1998).
[17] G. Modugno, M. Modugno, F. Riboli, G. Roati, and M. Inguscio,

Phys. Rev. Lett. 89, 190404 (2002).
[18] S. B. Koller, A. Groot, P. C. Bons, R. A. Duine, H. T. C. Stoof,

and P. van der Straten, New J. Phys. 17, 113026 (2015).
[19] T. Bienaimé, E. Fava, G. Colzi, C. Mordini, S. Serafini, C. Qu,

S. Stringari, G. Lamporesi, and G. Ferrari, Phys. Rev. A 94,
063652 (2016).

[20] B. DeMarco and D. S. Jin, Phys. Rev. Lett. 88, 040405 (2002).
[21] G. Valtolina, F. Scazza, A. Amico, A. Burchianti, A. Recati, T.

Enss, M. Inguscio, M. Zaccanti, and G. Roati, Nat. Phys. 13,
704 (2017).

[22] I. Ferrier-Barbut, M. Delehaye, S. Laurent, A. T. Grier, M.
Pierce, B. S. Rem, F. Chevy, and C. Salomon, Science 345,
1035 (2014).

[23] M. Delehaye, S. Laurent, I. Ferrier-Barbut, S. Jin, F. Chevy, and
C. Salomon, Phys. Rev. Lett. 115, 265303 (2015).

[24] R. Roy, A. Green, R. Bowler, and S. Gupta, Phys. Rev. Lett.
118, 055301 (2017).

[25] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and
A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).

[26] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T.
Jungwirth, Rev. Mod. Phys. 87, 1213 (2015).

[27] A. Manchon, H. C. Koo, J. Nitta, S. M. Frolov, and R. A. Duine,
Nat. Mater. 14, 871 (2015).

[28] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[29] J. Armaitis, J. Ruseckas, and G. Juzeliūnas, Phys. Rev. A 95,
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