46,297 research outputs found

    Stabilising entanglement by quantum jump-based feedback

    Full text link
    We show that direct feedback based on quantum jump detection can be used to generate entangled steady states. We present a strategy that is insensitive to detection inefficiencies and robust against errors in the control Hamiltonian. This feedback procedure is also shown to overcome spontaneous emission effects by stabilising states with high degree of entanglement.Comment: 5 pages, 4 figure

    The Role of Fermions in Bubble Nucleation

    Get PDF
    We present a study of the role of fermions in the decay of metastable states of a scalar field via bubble nucleation. We analyze both one and three-dimensional systems by using a gradient expansion for the calculation of the fermionic determinant. The results of the one-dimensional case are compared to the exact results of previous work.Comment: 15 pages, revtex, 9 figure

    Adsorption of two pesticides on a clay surface: a theoretical study

    Get PDF
    The contamination of water resources with many organic xenobiotic compounds poses a challenge to environmental sciences and technologies [1]. Although in many cases these contaminants are present only in small concentrations, the large variety of such compounds (some of which are classified as priority pollutants) is a matter of concern. Adsorption, alone or as part of a more complex water or wastewater treatment process, has been seen as playing a very important role in the removal of many of these pollutants [2]. In this regard, the choice of adsorbent materials is crucial, which requires an understanding of the details involved in the adsorption of more or less complex organic molecules by a variety of surfaces of different types. In addition to laboratory studies, computational studies may be valuable in this study [3]. MCPA (2-methyl-4-chlorophenoxyacetic acid, a herbicide) and Clofibric acid (2-(4-chlorophenoxy)-2-methylpropanoic, the metabolite of a pharmaceutical, clofibrate, and also a herbicide) are two phenoxy acids that differ only slightly in their structures. However, a quite distinct behavior in adsorption phenomena on clay materials has been observed in past studies [4]. By relating those differences with the molecules' structural features through atomistic computational studies, some insight may be gained into the respective adsorption processes of this type of compounds. In the present work quantum chemical calculations at density functional theory level have been performed to study the adsorption of MCPA and Clofibric acid by a clay surface model. Since hydration plays an important role for the adsorption process of these species, solvent effects were considered by inclusion of water molecules explicitly into the quantum chemical calculations. The deprotonated negatively charged species were found to strongly interact with the surface and the distinct behavior of both species upon adsorption was compared with experimental evidences

    Cosmic homogeneity: a spectroscopic and model-independent measurement

    Get PDF
    Cosmology relies on the Cosmological Principle, i.e., the hypothesis that the Universe is homogeneous and isotropic on large scales. This implies in particular that the counts of galaxies should approach a homogeneous scaling with volume at sufficiently large scales. Testing homogeneity is crucial to obtain a correct interpretation of the physical assumptions underlying the current cosmic acceleration and structure formation of the Universe. In this Letter, we use the Baryon Oscillation Spectroscopic Survey to make the first spectroscopic and model-independent measurements of the angular homogeneity scale θh\theta_{\rm h}. Applying four statistical estimators, we show that the angular distribution of galaxies in the range 0.46 < z < 0.62 is consistent with homogeneity at large scales, and that θh\theta_{\rm h} varies with redshift, indicating a smoother Universe in the past. These results are in agreement with the foundations of the standard cosmological paradigm.Comment: 5 pages, 2 figures, Version accepted by MNRA

    Forecasting cosmological constraints from age of high-z galaxies

    Full text link
    We perform Monte Carlo simulations based on current age estimates of high-z objects to forecast constraints on the equation of state (EoS) of the dark energy. In our analysis, we use two different EoS parameterizations, namely, the so-called CPL and its uncorrelated form and calculate the improvements on the figure of merit for both cases. Although there is a clear dependence of the FoM with the size and accuracy of the synthetic age samples, we find that the most substantial gain in FoM comes from a joint analysis involving age and baryon acoustic oscillation data.Comment: 4 pages, 13 figures, late
    • …
    corecore