2,245 research outputs found

    Levy flights and Levy -Schroedinger semigroups

    Full text link
    We analyze two different confining mechanisms for L\'{e}vy flights in the presence of external potentials. One of them is due to a conservative force in the corresponding Langevin equation. Another is implemented by Levy-Schroedinger semigroups which induce so-called topological Levy processes (Levy flights with locally modified jump rates in the master equation). Given a stationary probability function (pdf) associated with the Langevin-based fractional Fokker-Planck equation, we demonstrate that generically there exists a topological L\'{e}vy process with the very same invariant pdf and in the reverse.Comment: To appear in Cent. Eur. J. Phys. (2010

    Video Pandemics: Worldwide Viral Spreading of Psy's Gangnam Style Video

    Full text link
    Viral videos can reach global penetration traveling through international channels of communication similarly to real diseases starting from a well-localized source. In past centuries, disease fronts propagated in a concentric spatial fashion from the the source of the outbreak via the short range human contact network. The emergence of long-distance air-travel changed these ancient patterns. However, recently, Brockmann and Helbing have shown that concentric propagation waves can be reinstated if propagation time and distance is measured in the flight-time and travel volume weighted underlying air-travel network. Here, we adopt this method for the analysis of viral meme propagation in Twitter messages, and define a similar weighted network distance in the communication network connecting countries and states of the World. We recover a wave-like behavior on average and assess the randomizing effect of non-locality of spreading. We show that similar result can be recovered from Google Trends data as well.Comment: 10 page

    STEPS - an approach for human mobility modeling

    Get PDF
    In this paper we introduce Spatio-TEmporal Parametric Stepping (STEPS) - a simple parametric mobility model which can cover a large spectrum of human mobility patterns. STEPS makes abstraction of spatio-temporal preferences in human mobility by using a power law to rule the nodes movement. Nodes in STEPS have preferential attachment to favorite locations where they spend most of their time. Via simulations, we show that STEPS is able, not only to express the peer to peer properties such as inter-ontact/contact time and to reflect accurately realistic routing performance, but also to express the structural properties of the underlying interaction graph such as small-world phenomenon. Moreover, STEPS is easy to implement, exible to configure and also theoretically tractable

    Neutron star properties and the equation of state of neutron-rich matter

    Full text link
    We calculate total masses and radii of neutron stars (NS) for pure neutron matter and nuclear matter in beta-equilibrium. We apply a relativistic nuclear matter equation of state (EOS) derived from Dirac-Brueckner-Hartree-Fock (DBHF) calculations. We use realistic nucleon-nucleon (NN) interactions defined in the framework of the meson exchange potential models. Our results are compared with other theoretical predictions and recent observational data. Suggestions for further study are discussed.Comment: 13 pages, 9 figures, 1 table; Revised version, accepted for publication in Physical Review

    Multiscale mobility networks and the large scale spreading of infectious diseases

    Full text link
    Among the realistic ingredients to be considered in the computational modeling of infectious diseases, human mobility represents a crucial challenge both on the theoretical side and in view of the limited availability of empirical data. In order to study the interplay between small-scale commuting flows and long-range airline traffic in shaping the spatio-temporal pattern of a global epidemic we i) analyze mobility data from 29 countries around the world and find a gravity model able to provide a global description of commuting patterns up to 300 kms; ii) integrate in a worldwide structured metapopulation epidemic model a time-scale separation technique for evaluating the force of infection due to multiscale mobility processes in the disease dynamics. Commuting flows are found, on average, to be one order of magnitude larger than airline flows. However, their introduction into the worldwide model shows that the large scale pattern of the simulated epidemic exhibits only small variations with respect to the baseline case where only airline traffic is considered. The presence of short range mobility increases however the synchronization of subpopulations in close proximity and affects the epidemic behavior at the periphery of the airline transportation infrastructure. The present approach outlines the possibility for the definition of layered computational approaches where different modeling assumptions and granularities can be used consistently in a unifying multi-scale framework.Comment: 10 pages, 4 figures, 1 tabl

    Momentum-Dependent Mean Field Based Upon the Dirac-Brueckner Approach for Nuclear Matter

    Full text link
    A momentum-dependent mean field potential, suitable for application in the transport-model description of nucleus-nucleus collisions, is derived in a microscopic way. The derivation is based upon the Bonn meson-exchange model for the nucleon-nucleon interaction and the Dirac-Brueckner approach for nuclear matter. The properties of the microscopic mean field are examined and compared with phenomenological parametrizations which are commonly used in transport-model calculations.Comment: 15 pages text (RevTex) and 4 figures (postscript in a separate uuencoded file), UI-NTH-930

    Simultaneous existence of two spin-wave modes in ultrathin Fe/GaAs(001) films studied by Brillouin Light Scattering: experiment and theory

    Full text link
    A double-peaked structure was observed in the {\it in-situ} Brillouin Light Scattering (BLS) spectra of a 6 \AA thick epitaxial Fe/GaAs(001) film for values of an external magnetic field HH, applied along the hard in plane direction, lower than a critical value Hc0.9H_c\simeq 0.9 kOe. This experimental finding is theoretically interpreted in terms of a model which assumes a non-homogeneous magnetic ground state characterized by the presence of perperpendicular up/down stripe domains. For such a ground state, two spin-wave modes, namely an acoustic and an optic mode, can exist. Upon increasing the field the magnetization tilts in the film plane, and for HHcH \ge H_{c} the ground state is homogeneous, thus allowing the existence of just a single spin-wave mode. The frequencies of the two spin-wave modes were calculated and successfully compared with the experimental data. The field dependence of the intensities of the corresponding two peaks that are present in the BLS spectra was also estimated, providing further support to the above-mentioned interpretation.Comment: Shortened version (7 pages). Accepted for publication in Physical Review

    Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F(2) variance of growth and obesity in DU6i x DBA/2 mice

    Get PDF
    Genes influencing body weight and composition and serum concentrations of leptin, insulin, and insulin-like growth factor I (IGF-I) in nonfasting animals were mapped in an intercross of the extreme high-growth mouse line DU6i and the inbred line DBA/2. Significant loci with major effects (F > 7.07) for body weight, obesity, and muscle weight were found on chromosomes 1, 4, 5, 7, 11, 12, 13, and 17, for leptin on chromosome 14, for insulin on chromosome 4, and for IGF-I on chromosome 10 at the Igf1 gene locus itself and on chromosome 18. Significant interaction between different quantitative trait loci (QTL) positions was observed (P < 0.01). Evidence was found that loci having small direct effect on growth or obesity contribute to the obese phenotype by gene–gene interaction. The effects of QTLs, epistasis, and pleiotropy account for 64% and 63% of the phenotypic variance of body weight and fat accumulation and for over 32% of muscle weight and serum concentrations of leptin, and IGF-I in the F2 population of DU6i x DBA/2 mice. [The quantitative trait loci described in this paper have been submitted to the Mouse Genome Database.

    Quark mean field model with density dependent couplings for finite nuclei

    Get PDF
    The quark mean field model, which describes the nucleon using the constituent quark model, is applied to investigate the properties of finite nuclei. The couplings of the scalar and vector mesons with quarks are made density dependent through direct coupling to the scalar field so as to reproduce the relativistic Brueckner-Hartree-Fock results of nuclear matter. The present model provides satisfactory results on the properties of spherical nuclei, and predicts an increasing size of the nucleon as well as a reduction of the nucleon mass in the nuclear environmentComment: 8 pages, REVTeX, 8 ps figures, accepted for publication in Phys. Rev.
    corecore