738 research outputs found
Probing spin dynamics and quantum relaxation in LiY0.998Ho0.002F4 via 19F NMR
We report measurements of 19F nuclear spin-lattice relaxation 1/T1 as a
function of temperature and external magnetic field in LiY0.998Ho0.002F4 single
crystal, a single-ion magnet exhibiting interesting quantum effects. The 19F
1/T1 is found to depend on the coupling with the diluted rare-earth (RE)
moments. Depending on the temperature range, a fast spin diffusion regime or a
diffusion limited regime is encountered. In both cases we find it possible to
use the 19F nucleus as a probe of the rare-earth spin dynamics. The results for
1/T1 show a behavior similar to that observed in molecular nanomagnets, a
result which we attribute to the discreteness of the energy levels in both
cases. At intermediate temperatures the lifetime broadening of the crystal
field split RE magnetic levels follows a T3 power law. At low temperature the
field dependence of 1/T1 shows peaks in correspondence to the critical magnetic
fields for energy level crossings (LC). The results can be explained by
inelastic scattering between the fluorine nuclear spins and the RE magnetic
levels. A key result of this study is that the broadening of the levels at LC
is found to be become extremely small at low temperatures, about 1.7 mT, a
value which is comparable to the weak dipolar fields at the RE lattice
positions. Thus, unlike the molecular magnets, decoherence effects are strongly
suppressed, and it may be possible to measure directly the level repulsions at
avoided level crossings.Comment: 21 pages, 5 figure
19F nuclear spin relaxation and spin diffusion effects in the single ion magnet LiYF4:Ho3+
Temperature and magnetic field dependences of the 19F nuclear spin-lattice
relaxation in a single crystal of LiYF4 doped with holmium are described by an
approach based on a detailed consideration of the magnetic dipole-dipole
interactions between nuclei and impurity paramagnetic ions and nuclear spin
diffusion processes. The observed non-exponential long time recovery of the
nuclear magnetization after saturation at intermediate temperatures is in
agreement with predictions of the spin-diffusion theory in a case of the
diffusion limited relaxation. At avoided level crossings in the spectrum of
electron-nuclear states of the Ho3+ ion, rates of nuclear spin-lattice
relaxation increase due to quasi-resonant energy exchange between nuclei and
paramagnetic ions, in contrast to the predominant role played by electronic
cross-relaxation processes in the low-frequency ac-susceptibility.Comment: 27 pages total, 5 figures, accepted for publication, Eur. Phys. J.
Spin dynamics in hole-doped two-dimensional S=1/2 Heisenberg antiferromagnets: ^{63}Cu NQR relaxation in La_{2-x}Sr_xCuO_4 for
The effects on the correlated Cu^{2+} S = 1/2 spin dynamics in the
paramagnetic phase of La_{2-x}Sr_xCuO_4 (for ) due to the
injection of holes are studied by means of ^{63}Cu NQR spin-lattice relaxation
time T_1 measurements. The results are discussed in the framework of the
connection between T_1 and the in-plane magnetic correlation length
. It is found that at high temperatures the system remains in
the renormalized classical regime, with a spin stiffness constant
reduced by small doping to an extent larger than the one due to Zn doping. For
the effect of doping on appears to level off. The
values for derived from T_1 for K are much larger
than the ones estimated from the temperature behavior of sublattice
magnetization in the ordered phase (). It is argued that these
features are consistent with the hypothesis of formation of stripes of
microsegregated holes.Comment: 10 pages, 3 figure
Dynamics of Magnetic Defects in Heavy Fermion LiV2O4 from Stretched Exponential 7Li NMR Relaxation
7Li NMR measurements on LiV2O4 from 0.5 to 4.2 K are reported. A small
concentration of magnetic defects within the structure drastically changes the
7Li nuclear magnetization relaxation versus time from a pure exponential as in
pure LiV2O4 to a stretched exponential, indicating glassy behavior of the
magnetic defects. The stretched exponential function is described as arising
from a distribution of 7Li nuclear spin-lattice relaxation rates and we present
a model for the distribution in terms of the dynamics of the magnetic defects.
Our results explain the origin of recent puzzling 7Li NMR literature data on
LiV2O4 and our model is likely applicable to other glassy systems.Comment: Four typeset pages including four figure
High-Resolution Topography along Surface Rupture of the 16 October 1999 Hector Mine, California, Earthquake (M_w 7.1) from Airborne Laser Swath Mapping
In order to document surface rupture associated with the Hector Mine earthquake, in particular, the area of maximum slip and the deformed surface of Lavic Lake playa, we acquired high-resolution data using relatively new topographic-mapping methods. We performed a raster-laser scan of the main surface breaks along the entire rupture zone, as well as along an unruptured portion of the Bullion fault. The image of the ground surface produced by this method is highly detailed, comparable to that obtained when geologists make particularly detailed site maps for geomorphic or paleoseismic studies. In this case, however, for the first time after a surface-rupturing earthquake, the detailed mapping is along the entire fault zone rather than being confined to selected sites. These data are geodetically referenced, using the Global Positioning System, thus enabling more accurate mapping of the rupture traces. In addition, digital photographs taken along the same flight lines can be overlaid onto the precise topographic data, improving terrain visualization. We demonstrate the potential of these techniques for measuring fault-slip vectors
Magnetoresistance Anomalies in Antiferromagnetic YBa_2Cu_3O_{6+x}: Fingerprints of Charged Stripes
We report novel features in the in-plane magnetoresistance (MR) of heavily
underdoped YBa_2Cu_3O_{6+x}, which unveil a developed ``charged stripe''
structure in this system. One of the striking features is an anisotropy of the
MR with a "d-wave" symmetry upon rotating the magnetic field H within the ab
plane, which is caused by the rotation of the stripes with the external field.
With decreasing temperature, a hysteresis shows up below ~20 K in the MR curve
as a function of H and finally below 10 K the magnetic-field application
produces a persistent change in the resistivity. This "memory effect" is caused
by the freezing of the directionally-ordered stripes.Comment: 4 pages, 6 figures, final version, to appear in 4 October 1999 issue
of PR
^{17}O and ^{51}V NMR for the zigzag spin-1 chain compound CaV2O4
V NMR studies on CaV2O4 single crystals and O NMR studies on
O-enriched powder samples are reported. The temperature dependences of
the O NMR line width and nuclear spin-lattice relaxation rate give
strong evidence for a long-range antiferromagnetic transition at Tn = 78 K in
the powder. Magnetic susceptibility measurements show that Tn = 69 K in the
crystals. A zero-field V NMR signal was observed at low temperatures (f
237 MHz at 4.2 K) in the crystals. The field swept spectra with the
field in different directions suggest the presence of two antiferromagnetic
substructures. Each substructure is collinear, with the easy axes of the two
substructures separated by an angle of 19(1) degree, and with their average
direction pointing approximately along the b-axis of the crystal structure. The
two spin substructures contain equal number of spins. The temperature
dependence of the ordered moment, measured up to 45 K, shows the presence of an
energy gap Eg in the antiferromagnetic spin wave excitation spectrum.
Antiferromagnetic spin wave theory suggests that Eg lies between 64 and 98 K.Comment: 11 pages, 14 figures. v2: 2 new figures; version published in Phys.
Rev.
Coordinated X-ray and Optical observations of Star-Planet Interaction in HD 17156
The large number of close-in Jupiter-size exoplanets prompts the question
whether star-planet interaction (SPI) effects can be detected. We focused our
attention on the system HD 17156, having a Jupiter-mass planet in a very
eccentric orbit. Here we present results of the XMM-Newton observations and of
a five months coordinated optical campaign with the HARPS-N spectrograph. We
observed HD 17156 with XMM-Newton when the planet was approaching the apoastron
and then at the following periastron passage, quasi simultaneously with
HARPS-N. We obtained a clear () X-ray detection only at the
periastron visit, accompanied by a significant increase of the
chromospheric index. We discuss two possible scenarios for the activity
enhancement: magnetic reconnection and flaring or accretion onto the star of
material tidally stripped from the planet. In any case, this is possibly the
first evidence of a magnetic SPI effect caught in action
Implications of Charge Ordering for Single-Particle Properties of High-Tc Superconductors
The consequences of disordered charge stripes and antiphase spin domains for
the properties of the high-temperature superconductors are studied. We focus on
angle-resolved photoemission spectroscopy and optical conductivity, and show
that the many unusual features of the experimentally observed spectra can be
understood naturally in this way. This interpretation of the data, when
combined with evidence from neutron scattering and NMR, suggests that
disordered and fluctuating stripe phases are a common feature of
high-temperature superconductors.Comment: 4 pages, figures by fax or mai
- …