142 research outputs found

    Compilation of relations for the antisymmetric tensors defined by the Lie algebra cocycles of su(n)su(n)

    Full text link
    This paper attempts to provide a comprehensive compilation of results, many new here, involving the invariant totally antisymmetric tensors (Omega tensors) which define the Lie algebra cohomology cocycles of su(n)su(n), and that play an essential role in the optimal definition of Racah-Casimir operators of su(n)su(n). Since the Omega tensors occur naturally within the algebra of totally antisymmetrised products of λ\lambda-matrices of su(n)su(n), relations within this algebra are studied in detail, and then employed to provide a powerful means of deriving important Omega tensor/cocycle identities. The results include formulas for the squares of all the Omega tensors of su(n)su(n). Various key derivations are given to illustrate the methods employed.Comment: Latex file (run thrice). Misprints corrected, Refs. updated. Published in IJMPA 16, 1377-1405 (2001

    Superalgebra cohomology, the geometry of extended superspaces and superbranes

    Get PDF
    We present here a cohomological analysis of the new spacetime superalgebras that arise in the context of superbrane theory. They lead to enlarged superspaces that allow us to write D-brane actions in terms of fields associated with the additional superspace variables. This suggests that there is an extended superspace/worldvolume fields democracy for superbranes.Comment: 12 pages, LATEX. Invited lecture delivered at the XXXVII Karpacz Winter School on "New Developments in Fundamental Interaction Theories" (6-15 February, 2001, Karpacz, Poland). To be published in the Proceeding

    Topics on n-ary algebras

    Full text link
    We describe the basic properties of two n-ary algebras, the Generalized Lie Algebras (GLAs) and, particularly, the Filippov (or n-Lie) algebras (FAs), and comment on their n-ary Poisson counterparts, the Generalized Poisson (GP) and Nambu-Poisson (N-P) structures. We describe the Filippov algebra cohomology relevant for the central extensions and infinitesimal deformations of FAs. It is seen that semisimple FAs do not admit central extensions and, moreover, that they are rigid. This extends the familiar Whitehead's lemma to all n2n\geq 2 FAs, n=2 being the standard Lie algebra case. When the n-bracket of the FAs is no longer required to be fully skewsymmetric one is led to the n-Leibniz (or Loday's) algebra structure. Using that FAs are a particular case of n-Leibniz algebras, those with an anticommutative n-bracket, we study the class of n-Leibniz deformations of simple FAs that retain the skewsymmetry for the first n-1 entires of the n-Leibniz bracket.Comment: 11 page

    Braided structure of fractional Z3Z_3-supersymmetry

    Get PDF
    It is shown that fractional Z3Z_3-superspace is isomorphic to the qexp(2πi/3)q\to\exp(2\pi i/3) limit of the braided line. Z3Z_3-supersymmetry is identified as translational invariance along this line. The fractional translation generator and its associated covariant derivative emerge as the qexp(2πi/3)q\to\exp(2\pi i/3) limits of the left and right derivatives from the calculus on the braided lineComment: 8 pages, LaTeX, submitted to Proceedings of the 5th Colloquium `Quantum groups and integrable systems', Prague, June 1996 (to appear in Czech. J. Phys.

    Central extensions of the families of quasi-unitary Lie algebras

    Get PDF
    The most general possible central extensions of two whole families of Lie algebras, which can be obtained by contracting the special pseudo-unitary algebras su(p,q) of the Cartan series A_l and the pseudo-unitary algebras u(p,q), are completely determined and classified for arbitrary p,q. In addition to the su(p,q) and u({p,q}) algebras, whose second cohomology group is well known to be trivial, each family includes many non-semisimple algebras; their central extensions, which are explicitly given, can be classified into three types as far as their properties under contraction are involved. A closed expression for the dimension of the second cohomology group of any member of these families of algebras is given.Comment: 23 pages. Latex2e fil
    corecore