8,827 research outputs found

    Full-vector analysis of a realistic photonic crystal fiber

    Get PDF
    We analyze the guiding problem in a realistic photonic crystal fiber using a novel full-vector modal technique, a biorthogonal modal method based on the nonselfadjoint character of the electromagnetic propagation in a fiber. Dispersion curves of guided modes for different fiber structural parameters are calculated along with the 2D transverse intensity distribution of the fundamental mode. Our results match those achieved in recent experiments, where the feasibility of this type of fiber was shown.Comment: 3 figures, submitted to Optics Letter

    Large isotope effect on TcT_c in cuprates despite of a small electron-phonon coupling

    Full text link
    We calculate the isotope coefficients α\alpha and α∗\alpha^\ast for the superconducting critical temperature TcT_c and the pseudogap temperature T∗T^\ast in a mean-field treatment of the t-J model including phonons. The pseudogap phase is identified with the dd-charge-density wave (dd-CDW) phase in this model. Using the small electron-phonon coupling constant λd∼0.02\lambda_d \sim 0.02 obtained previously in LDA calculations in YBa2_2Cu3_3O7_7, α∗\alpha^{\ast} is negative but negligible small whereas α\alpha increases from about 0.03 at optimal doping to values around 1 at small dopings in agreement with the general trend observed in many cuprates. Using a simple phase fluctuation model where the dd-CDW has only short-range correlations it is shown that the large increase of α\alpha at low dopings is rather universal and does not depend on the existence of sharp peaks in the density of states in the pseudogap state or on specific values of the phonon cutoff. It rather is caused by the large depletion of spectral weight at low frequencies by the dd-CDW and thus should also occur in other realizations of the pseudogap.Comment: 8 pages, 5 figures, to be publ. in PR

    Universal geometrical scaling of the elliptic flow

    Full text link
    The presence of scaling variables in experimental observables provide very valuable indications of the dynamics underlying a given physical process. In the last years, the search for geometric scaling, that is the presence of a scaling variable which encodes all geometrical information of the collision as well as other external quantities as the total energy, has been very active. This is motivated, in part, for being one of the genuine predictions of the Color Glass Condensate formalism for saturation of partonic densities. Here we extend these previous findings to the case of experimental data on elliptic flow. We find an excellent scaling for all centralities and energies, from RHIC to LHC, with a simple generalization of the scaling previously found for other observables and systems. Interestingly the case of the photons, difficult to reconcile in most formalisms, nicely fit the scaling curve. We discuss the possible interpretations of this finding in terms of initial or final state effects.Comment: 6 pages, 4 figures, accepted for publication in Phys Rev

    Bayesian analysis of 210Pb dating

    Get PDF
    In many studies of environmental change of the past few centuries, 210Pb dating is used to obtain chronologies for sedimentary sequences. One of the most commonly used approaches to estimate the ages of depths in a sequence is to assume a constant rate of supply (CRS) or influx of `unsupported' 210Pb from the atmosphere, together with a constant or varying amount of `supported' 210Pb. Current 210Pb dating models do not use a proper statistical framework and thus provide poor estimates of errors. Here we develop a new model for 210Pb dating, where both ages and values of supported and unsupported 210Pb form part of the parameters. We apply our model to a case study from Canada as well as to some simulated examples. Our model can extend beyond the current CRS approach, deal with asymmetric errors and mix 210Pb with other types of dating, thus obtaining more robust, realistic and statistically better defined estimates.Comment: 22 Pages, 4 Figure

    Small but long koch fractal monopole

    Get PDF
    A small but long wire fractal antenna based on the Koch curve is presented. Experimental and numerical results show that the antenna improves the features of a common linear monopole. The radiation resistance is increased and the Q is reduced at each fractal iteration, approaching the fundamental limit on small antennas.Peer ReviewedPostprint (published version

    High Curie temperatures in (Ga,Mn)N from Mn clustering

    Full text link
    The effect of microscopic Mn cluster distribution on the Curie temperature (Tc) is studied using density-functional calculations. We find that the calculated Tc depends crucially on the microscopic cluster distribution, which can explain the abnormally large variations in experimental Tc values from a few K to well above room temperature. The partially dimerized Mn_2-Mn_1 distribution is found to give the highest Tc > 500 K, and in general, the presence of the Mn_2 dimer has a tendency to enhance Tc. The lowest Tc values close to zero are obtained for the Mn_4-Mn_1 and Mn_4-Mn_3 distributions.Comment: To appear in Applied Phyiscs Letter
    • …
    corecore