670 research outputs found
Cosmic ray charge and energy spectra above 10 GeV
The composition and energy spectra of cosmic rays above 1.6 nJ (10 GeV) on balloons and ultimately on the HEAO satellite is discussed. Some results from a balloon flight in November of 1970 are presented. The instrument is shown schematically. It is designed to identify cosmic ray electrons, protons, and nuclei up through iron and to measure their energies
Implications of HEAO-3 data for the acceleration and propagation of galactic cosmic rays
The energy dependence of the mean escape length of cosmic rays from the galaxy in the light of recent measurements of cosmic ray abundances from the Danish-French experiment on HEAO-3 is re-examined. The energy dependence is found to be steeper than previously thought
An upper limit on the quiet time solar neutron flux at energies greater than 60 MeV
Upper limit on quiet time solar neutron flux at energies above 60 MeV determined by using balloon flights with Cerenkov scintillation counter
Origin and propagation of galactic cosmic rays
The study of systematic trends in elemental abundances is important for unfolding the nuclear and/or atomic effects that should govern the shaping of source abundances and in constraining the parameters of cosmic ray acceleration models. In principle, much can be learned about the large-scale distributions of cosmic rays in the galaxy from all-sky gamma ray surveys such as COS-B and SAS-2. Because of the uncertainties in the matter distribution which come from the inability to measure the abundance of molecular hydrogen, the results are somewhat controversial. The leaky-box model accounts for a surprising amount of the data on heavy nuclei. However, a growing body of data indicates that the simple picture may have to be abandoned in favor of more complex models which contain additional parameters. Future experiments on the Spacelab and space station will hopefully be made of the spectra of individual nuclei at high energy. Antiprotons must be studied in the background free environment above the atmosphere with much higher reliability and presion to obtain spectral information
Interpretation of cosmic ray composition: The pathlength distribution
For abstract see A81-43868
Observations of nuclei heavier than iron in the primary cosmic radiation
Charge and energy spectra of primary cosmic rays made with large area Cerenkov scintillation counter on baloon flights - heavier than iron nucle
Cosmic Ray Electron Science with GLAST
Cosmic ray electrons at high energy carry information about their sources, their definition in local magnetic fields and their interactions with the photon fields through which they travel. The spectrum of the particles is affected by inverse Compton losses and synchrotron losses, the rates of which are proportional to the square of the particle's energy making the spectra very steep. However, GLAST will be able to make unique and very high statistics measurements of electrons from approx. 20 to approx. 700 GeV that will allow us to search for anisotropies in anival direction and spectral features associated with some dark matter candidates. Complementary information on electrons of still higher energy will be required to see effects of possible individual cosmic ray sources
Energy spectra of cosmic ray nuclei: 4z26 and .3E2 GeV/amu
Energy spectra of cosmic ray nuclei in the charge range 5 is less than or equal to z less than or equal to 26 have been derived from the response of an acrylic plastic Cerenkov detector. Data were obtained using a balloon borne detector and cover the energy range 320 is approximately less than e approximately less than 2200 MeV. amu. Spectra are derived from a formal deconvolution using the method of Lezniak (1975). Relative spectra of different elements are compared by observing charge ratios. Secondary primary ratios are observed to decrease with increasing energy, consistent with the effect previously observed at higher energy. Primary to primary ratios are constant for 6 is less than or equal to z less than or equal to 26 and 14 is less than or equal to z less than or equal to 26 but vary for 10 is less than or equal to z less than or equal to 14. This data is found to be consistent with existing data where comparable and lends strong support ot the idea of two separate source populations contributing to the cosmic ray composition
Cosmic ray nuclei of energy 50 GeV/NUC
Preliminary results from the High Energy Gas Cerenkov Spectrometer indicate that the sub-iron to iron ratio increases beyond 100 GeV/nucleon. This surprising finding is examined in light of various models for the origin and propagation of galactic cosmic rays
Antiprotons in cosmic rays
Recent experimental observations and results are discussed. It was found that the approximately 50 antiprotons collected in balloon experiments to date have generated considerable theoretical interest. Clearly, confirmatory experiments and measurements over an extended energy range are required before definite conclusions are drawn. Antiproton measurements have a bearing on astrophysical problems ranging from cosmic ray propagation to issues of cosmological import. The next generation of balloon experiments and the Particle Astrophysics Magnet Facility being discussed for operation on NASA's space station should provide data and insights of highest interest
- …