4,163 research outputs found

    Fourier Path Integral Monte Carlo Method for the Calculation of the Microcanonical Density of States

    Full text link
    Using a Hubbard-Stratonovich transformation coupled with Fourier path integral methods, expressions are derived for the numerical evaluation of the microcanonical density of states for quantum particles obeying Boltzmann statistics. A numerical algorithmis suggested to evaluate the quantum density of states and illustrated on a one-dimensional model system.Comment: Journal of Chemical Physic

    Locating transition states using double-ended classical trajectories

    Get PDF
    In this paper we present a method for locating transition states and higher-order saddles on potential energy surfaces using double-ended classical trajectories. We then apply this method to 7- and 8-atom Lennard-Jones clusters, finding one previously unreported transition state for the 7-atom cluster and two for the 8-atom cluster.Comment: Journal of Chemical Physics, 13 page

    Numerical implementation of some reweighted path integral methods

    Full text link
    The reweighted random series techniques provide finite-dimensional approximations to the quantum density matrix of a physical system that have fast asymptotic convergence. We study two special reweighted techniques that are based upon the Levy-Ciesielski and Wiener-Fourier series, respectively. In agreement with the theoretical predictions, we demonstrate by numerical examples that the asymptotic convergence of the two reweighted methods is cubic for smooth enough potentials. For each reweighted technique, we propose some minimalist quadrature techniques for the computation of the path averages. These quadrature techniques are designed to preserve the asymptotic convergence of the original methods.Comment: 15 pages, 10 figures, submitted to JC

    Taming the rugged landscape: production, reordering, and stabilization of selected cluster inherent structures in the X_(13-n)Y_n system

    Get PDF
    We present studies of the potential energy landscape of selected binary Lennard-Jones thirteen atom clusters. The effect of adding selected impurity atoms to a homogeneous cluster is explored. We analyze the energy landscapes of the studied systems using disconnectivity graphs. The required inherent structures and transition states for the construction of disconnectivity graphs are found by combination of conjugate gradient and eigenvector-following methods. We show that it is possible to controllably induce new structures as well as reorder and stabilize existing structures that are characteristic of higher-lying minima. Moreover, it is shown that the selected structures can have experimentally relevant lifetimes.Comment: 12 pages, 14 figures, submitted to J. Chem. Phys. Reasons for replacing a paper: figures 2, 3, 7 and 11 did not show up correctl

    Higher order and infinite Trotter-number extrapolations in path integral Monte Carlo

    Full text link
    Improvements beyond the primitive approximation in the path integral Monte Carlo method are explored both in a model problem and in real systems. Two different strategies are studied: the Richardson extrapolation on top of the path integral Monte Carlo data and the Takahashi-Imada action. The Richardson extrapolation, mainly combined with the primitive action, always reduces the number-of-beads dependence, helps in determining the approach to the dominant power law behavior, and all without additional computational cost. The Takahashi-Imada action has been tested in two hard-core interacting quantum liquids at low temperature. The results obtained show that the fourth-order behavior near the asymptote is conserved, and that the use of this improved action reduces the computing time with respect to the primitive approximation.Comment: 19 pages, RevTex, to appear in J. Chem. Phy

    Dynamic Path Integral Methods: A Maximum Entropy Approach Based on the Combined use of Real and Imaginary Time Quantum Monte Carlo Data

    Get PDF
    A new numerical procedure for the study of finite temperature quantumdynamics is developed. The method is based on the observation that the real and imaginary time dynamical data contain complementary types of information. Maximum entropy methods, based on a combination of real and imaginary time input data, are used to calculate the spectral densities associated with real time correlation functions. Model studies demonstrate that the inclusion of even modest amounts of short-time real time data significantly improves the quality of the resulting spectral densities over that achievable using either real time data or imaginary time data separately

    Phase changes in 38 atom Lennard-Jones clusters. II: A parallel tempering study of equilibrium and dynamic properties in the molecular dynamics and microcanonical

    Get PDF
    We study the 38-atom Lennard-Jones cluster with parallel tempering Monte Carlo methods in the microcanonical and molecular dynamics ensembles. A new Monte Carlo algorithm is presented that samples rigorously the molecular dynamics ensemble for a system at constant total energy, linear and angular momenta. By combining the parallel tempering technique with molecular dynamics methods, we develop a hybrid method to overcome quasi-ergodicity and to extract both equilibrium and dynamical properties from Monte Carlo and molecular dynamics simulations. Several thermodynamic, structural and dynamical properties are investigated for LJ38_{38}, including the caloric curve, the diffusion constant and the largest Lyapunov exponent. The importance of insuring ergodicity in molecular dynamics simulations is illustrated by comparing the results of ergodic simulations with earlier molecular dynamics simulations.Comment: Journal of Chemical Physics, accepte

    Energy estimators for random series path-integral methods

    Get PDF
    We perform a thorough analysis on the choice of estimators for random series path integral methods. In particular, we show that both the thermodynamic (T-method) and the direct (H-method) energy estimators have finite variances and are straightforward to implement. It is demonstrated that the agreement between the T-method and the H-method estimators provides an important consistency check on the quality of the path integral simulations. We illustrate the behavior of the various estimators by computing the total, kinetic, and potential energies of a molecular hydrogen cluster using three different path integral techniques. Statistical tests are employed to validate the sampling strategy adopted as well as to measure the performance of the parallel random number generator utilized in the Monte Carlo simulation. Some issues raised by previous simulations of the hydrogen cluster are clarified.Comment: 15 pages, 1 figure, 3 table
    • …
    corecore