1,324 research outputs found

    A mechanical behavior law for the numerical simulation of the mushy zone in welding

    Get PDF
    The aim of this work is to propose a mechanical behavior law dedicated to the mushy zone located between the solid phase and the weld pool in welding. The objective is to take into account of the influence of the mushy zone in the simulation of welding in order to improve the computation of induced effects such as residual stresses

    Finite-distance singularities in the tearing of thin sheets

    Full text link
    We investigate the interaction between two cracks propagating in a thin sheet. Two different experimental geometries allow us to tear sheets by imposing an out-of-plane shear loading. We find that two tears converge along self-similar paths and annihilate each other. These finite-distance singularities display geometry-dependent similarity exponents, which we retrieve using scaling arguments based on a balance between the stretching and the bending of the sheet close to the tips of the cracks.Comment: 4 pages, 4 figure

    Spontaneous formation of optically induced surface relief gratings

    Get PDF
    A model based on Fick's law of diffusion as a phenomenological description of the molecular motion, and on the coupled mode theory, is developped to describe single-beam surface relief grating formation in azopolymers thin films. It allows to explain the mechanism of spontaneous patterning, and self-organization. It allows also to compute the surface relief profile and its evolution in time with good agreement with experiments

    HIGH PULSED CURRENTS FROM PHOTO-FIELD EMITTERS

    No full text
    Différent microemitters - single or arrays - with various geometries and kinds of material have been irradiated with pulsed laser beams. These emitters working in photo-field emission regime delivered very high intensity electron bunches. Peak intensities as high as some tens of Amps with less than one ns duration have been obtained with U.V. light. New type of microemitters developed in collaboration with BNL have been tested since last year showing the possibility of obtaining charges above 20 nC with low energy laser puises, (εi = 100µJ). The main parameters affecting the choice of these emitters as quantum yield, photocurrent density, electron pulse length, repetition rate and vacuum system level are here discussed. Good performances obtained with these emitters as well as the absence of cesiation make these microemitters interesting candidates for the new generation of linac injectors as well as for multimegawatt RF sources. At LAL, Orsay efforts have been made since three years to develop such electron sources

    Shape-invariant quantum Hamiltonian with position-dependent effective mass through second order supersymmetry

    Full text link
    Second order supersymmetric approach is taken to the system describing motion of a quantum particle in a potential endowed with position-dependent effective mass. It is shown that the intertwining relations between second order partner Hamiltonians may be exploited to obtain a simple shape-invariant condition. Indeed a novel relation between potential and mass functions is derived, which leads to a class of exactly solvable model. As an illustration of our procedure, two examples are given for which one obtains whole spectra algebraically. Both shape-invariant potentials exhibit harmonic-oscillator-like or singular-oscillator-like spectra depending on the values of the shape-invariant parameter.Comment: 16 pages, 5 figs; Present e-mail of AG: [email protected]

    Series solutions for a static scalar potential in a Salam-Sezgin Supergravitational hybrid braneworld

    Full text link
    The static potential for a massless scalar field shares the essential features of the scalar gravitational mode in a tensorial perturbation analysis about the background solution. Using the fluxbrane construction of [8] we calculate the lowest order of the static potential of a massless scalar field on a thin brane using series solutions to the scalar field's Klein Gordon equation and we find that it has the same form as Newton's Law of Gravity. We claim our method will in general provide a quick and useful check that one may use to see if their model will recover Newton's Law to lowest order on the brane.Comment: 5 pages, no figure

    Standard and Generalized Newtonian Gravities as ``Gauge'' Theories of the Extended Galilei Group - I: The Standard Theory

    Full text link
    Newton's standard theory of gravitation is reformulated as a {\it gauge} theory of the {\it extended} Galilei Group. The Action principle is obtained by matching the {\it gauge} technique and a suitable limiting procedure from the ADM-De Witt action of general relativity coupled to a relativistic mass-point.Comment: 51 pages , compress, uuencode LaTex fil

    Conformal compactification and cycle-preserving symmetries of spacetimes

    Full text link
    The cycle-preserving symmetries for the nine two-dimensional real spaces of constant curvature are collectively obtained within a Cayley-Klein framework. This approach affords a unified and global study of the conformal structure of the three classical Riemannian spaces as well as of the six relativistic and non-relativistic spacetimes (Minkowskian, de Sitter, anti-de Sitter, both Newton-Hooke and Galilean), and gives rise to general expressions holding simultaneously for all of them. Their metric structure and cycles (lines with constant geodesic curvature that include geodesics and circles) are explicitly characterized. The corresponding cyclic (Mobius-like) Lie groups together with the differential realizations of their algebras are then deduced; this derivation is new and much simpler than the usual ones and applies to any homogeneous space in the Cayley-Klein family, whether flat or curved and with any signature. Laplace and wave-type differential equations with conformal algebra symmetry are constructed. Furthermore, the conformal groups are realized as matrix groups acting as globally defined linear transformations in a four-dimensional "conformal ambient space", which in turn leads to an explicit description of the "conformal completion" or compactification of the nine spaces.Comment: 43 pages, LaTe

    Geometry of deformations of branes in warped backgrounds

    Full text link
    The `braneworld' (described by the usual worldvolume action) is a D dimensional timelike surface embedded in a N dimensional (N>DN>D) warped, nonfactorisable spacetime. We first address the conditions on the warp factor required to have an extremal flat brane in a five dimensional background. Subsequently, we deal with normal deformations of such extremal branes. The ensuing Jacobi equations are analysed to obtain the stability condition. It turns out that to have a stable brane, the warp factor should have a minimum at the location of the brane in the given background spacetime. To illustrate our results we explicitly check the extremality and stability criteria for a few known co-dimension one braneworld models. Generalisations of the above formalism for the cases of (i) curved branes (ii) asymmetrical warping and (iii) higher co-dimension braneworlds are then presented alongwith some typical examples for each. Finally, we summarize our results and provide perspectives for future work along these lines.Comment: 21 pages. Version matching final version. Accepted for publication in Class. Quant. Gra

    Non-commuting coordinates, exotic particles, & anomalous anyons in the Hall effect

    Full text link
    Our previous ``exotic'' particle, together with the more recent anomalous anyon model (which has arbitrary gyromagnetic factor gg) are reviewed. The non-relativistic limit of the anyon generalizes the exotic particle which has g=0g=0 to any gg.When put into planar electric and magnetic fields, the Hall effect becomes mandatory for all g≠2g\neq2, when the field takes some critical value.Comment: A new reference added. Talk given by P. Horvathy at the International Workshop "Nonlinear Physics: Theory and Experiment. III. July'04, Gallipoli (Lecce, Italy). To be published in Theor. Math. Phys. Latex 9 pages, no figure
    • …
    corecore