962 research outputs found

    Flight-test nacelles

    Get PDF
    Design modifications for acoustically absorbing flight test nacelles of DC-8 turbofan engin

    Constraining the variation of fundamental constants using 18cm OH lines

    Full text link
    We describe a new technique to estimate variations in the fundamental constants using 18cm OH absorption lines. This has the advantage that all lines arise in the same species, allowing a clean comparison between the measured redshifts. In conjunction with one additional transition (for example, an HCO+^+ line), it is possible to simultaneously measure changes in α\alpha, gpg_p and yme/mpy \equiv m_e/m_p. At present, only the 1665 MHz and 1667 MHz lines have been detected at cosmological distances; we use these line redshifts in conjunction with those of HI 21cm and mm-wave molecular absorption in a gravitational lens at z0.68z\sim 0.68 to constrain changes in the above three parameters over the redshift range 0<z0.680 < z \lesssim 0.68. While the constraints are relatively weak (\lesssim 1 part in 10310^3), this is the first simultaneous constraint on the variation of all three parameters. We also demonstrate that either one (or more) of α\alpha, gpg_p and yy must vary with cosmological time or there must be systematic velocity offsets between the OH, HCO+^+ and HI absorbing clouds.Comment: 5 pages, no figures. Accepted for publication in Phys. Rev. Let

    Rotational Feshbach Resonances in Ultracold Molecular Collisions

    Full text link
    In collisions at ultralow temperatures, molecules will possess Feshbach resonances, foreign to ultracold atoms, whose virtual excited states consist of rotations of the molecules. We estimate the mean spacing and mean widths of these resonant states, exploiting the fact the molecular collisions at low energy display chaotic motion. As examples, we consider the experimentally relevant molecules O_2, OH, and PbO. The density of s-wave resonant states for these species is quite high, implying that a large number of narrow resonant states will exist.Comment: 4 pages, 2 figure

    Evaluation of Pooled Serum and ‘Meat-Juice’ in a Salmonella ELISA for Pig Herds

    Get PDF
    Samples of ‘meat-juice’, serum, caecal contents and carcase swabs from 420 pigs from 20 finishing farms were tested for Salmonella bacteriologically and serologically by ELISA on individual samples or on pools of serum or meat juice. In addition pooled floor faeces were taken from the finishing pens on the farm of origin

    Comparison of two commercial ELISA kits and bacteriology for Salmonella monitoring in pig herds

    Get PDF
    Samples of ‘meat-juice’ and serum from 170 pigs from 20 finishing farms were tested for Salmonella using two commercial ELISA kit tests. In parallel samples from caecal contents and pooled pen faeces from the farm were tested by culture. Both ELISA’s gave significantly correlated results with each other but only ELISA B, at a 20 % calculated OD % on ‘meat juice’, gave a result which correlated significantly with the percentage of positive pen faeces. None of the ELISA tests correlated with caecal positives and the 10 % cut-off level was shown to be unsuitable for monitoring commercial herds

    Temperature-Sensitive RB Mutations Linked to Incomplete Penetrance of Familial Retinoblastoma in 12 Families

    Get PDF
    SummaryThe tumor-suppressor activity of the retinoblastoma protein (RB) is encoded within a protein-binding (“pocket”) domain that is targeted for mutations in all cases of familial retinoblastoma and in many common adult cancers. Although familial retinoblastoma is a paradigm for a highly penetrant, recessive model of tumorigenesis, the molecular basis for the phenotype of incomplete penetrance of familial retinoblastoma is undefined. We studied the RB pocket-binding properties of three independent, mutant RB alleles that are present in the germline of 12 kindreds with the phenotype of incomplete penetrance of familial retinoblastoma. Each arises from alterations of single codons within the RB pocket domain (designated “Δ480,” “661W,” or “712R”). Under the same conditions, we studied the properties of wild-type (WT) RB, an RB point mutant isolated from a lung carcinoma sample (706F) and an adjacent, in vitro–generated point mutant (707W). The Δ480, 661W, and 712R mutants lack pocket protein-binding activity in vitro but retain the WT ability to undergo cyclin-mediated phosphorylation in vivo. Each of the low-penetrant RB mutants exhibits marked enhancement of pocket protein binding when the cells are grown at reduced temperature. In contrast, in this temperature range, no change in binding activity is seen with WT RB, the 706F mutant, or the 707W mutant. We have demonstrated that many families with incomplete penetrance of familial retinoblastoma carry unstable, mutant RB alleles with temperature-sensitive pocket protein-binding activity. The variable frequency for tumor development in these families may result from reversible fluctuations in a threshold level of RB pocket-binding activity

    Near-Infrared Classification Spectroscopy: H-band Spectra of Fundamental MK Standards

    Get PDF
    We present a catalogue of H-band spectra for 85 stars of approximately solar abundance observed at a resolving power of 3000 with the KPNO Mayall 4m FTS. The atlas covers spectral types O7-M5 and luminosity classes I-V as defined on the MK system. We identify both atomic and molecular indices and line-ratios which are temperature and luminosity sensitive allowing spectral classification to be carried out in the H-band. The line ratios permit spectral classification in the presence of continuum excess emission, which is commonly found in pre-main sequence and evolved stars. We demonstrate that with spectra of R = 1000 obtained at SNR > 50 it is possible to derive spectral types within +- 2 subclasses for late-type stars. These data are available electronically through the Astronomical Data Center in addition to being served on the World-Wide-Web.Comment: To appear in the November 20, 1998 issue of ApJ (Volume 508, #1

    Cold collisions of OH and Rb. I: the free collision

    Get PDF
    We have calculated elastic and state-resolved inelastic cross sections for cold and ultracold collisions in the Rb(1S^1 S) + OH(2Π3/2^2 \Pi_{3/2}) system, including fine-structure and hyperfine effects. We have developed a new set of five potential energy surfaces for Rb-OH(2Π^2 \Pi) from high-level {\em ab initio} electronic structure calculations, which exhibit conical intersections between covalent and ion-pair states. The surfaces are transformed to a quasidiabatic representation. The collision problem is expanded in a set of channels suitable for handling the system in the presence of electric and/or magnetic fields, although we consider the zero-field limit in this work. Because of the large number of scattering channels involved, we propose and make use of suitable approximations. To account for the hyperfine structure of both collision partners in the short-range region we develop a frame-transformation procedure which includes most of the hyperfine Hamiltonian. Scattering cross sections on the order of 101310^{-13} cm2^2 are predicted for temperatures typical of Stark decelerators. We also conclude that spin orientation of the partners is completely disrupted during the collision. Implications for both sympathetic cooling of OH molecules in an environment of ultracold Rb atoms and experimental observability of the collisions are discussed.Comment: 20 pages, 16 figure

    A snow and glacier hydrological model for large catchments – case study for the Naryn River, central Asia

    Get PDF
    In this paper we implement a degree day snowmelt and glacier melt model in the Dynamic fluxEs and ConnectIvity for Predictions of HydRology (DECIPHeR) model. The purpose is to develop a hydrological model that can be applied to large glaciated and snow-fed catchments yet is computationally efficient enough to include model uncertainty in streamflow predictions. The model is evaluated by simulating monthly discharge at six gauging stations in the Naryn River catchment (57 833 km2) in central Asia over the period 1951 to a variable end date between 1980 and 1995 depending on the availability of discharge observations. The spatial distribution of simulated snow cover is validated against MODIS weekly snow extent for the years 2001–2007. Discharge is calibrated by selecting parameter sets using Latin hypercube sampling and assessing the model performance using six evaluation metrics. The model shows good performance in simulating monthly discharge for the calibration period (NSE is 0.74&lt;NSE&lt;0.87) and validation period (0.7&lt;NSE&lt;0.9), where the range of NSE values represents the 5th–95th percentile prediction limits across the gauging stations. The exception is the Uch-Kurgan station, which exhibits a reduction in model performance during the validation period attributed to commissioning of the Toktogul reservoir in 1975 which impacted the observations. The model reproduces the spatial extent in seasonal snow cover well when evaluated against MODIS snow extent; 86 % of the snow extent is captured (mean 2001–2007) for the median ensemble member of the best 0.5 % calibration simulations. We establish the present-day contributions of glacier melt, snowmelt and rainfall to the total annual runoff and the timing of when these components dominate river flow. The model predicts well the observed increase in discharge during the spring (April–May) associated with the onset of snow melting and peak discharge during the summer (June, July and August) associated with glacier melting. Snow melting is the largest component of the annual runoff (89 %), followed by the rainfall (9 %) and the glacier melt component (2 %), where the values refer to the 50th percentile estimates at the catchment outlet gauging station Uch-Kurgan. In August, glacier melting can contribute up to 66 % of the total runoff at the highly glacierized Naryn headwater sub-catchment. The glaciated area predicted by the best 0.5 % calibration simulations overlaps the Landsat observations for the late 1990s and mid-2000s. Despite good predictions for discharge, the model produces a large range of estimates for the glaciated area (680–1196 km2) (5th–95th percentile limits) at the end of the simulation period. To constrain these estimates further, additional observations such as glacier mass balance, snow depth or snow extent should be used directly to constrain model simulations.</p

    Naturalistic rapid deceleration data: Drivers aged 75 years and older.

    Full text link
    The data presented in this article are related to the research manuscript "Predictors of older drivers' involvement in rapid deceleration events", which investigates potential predictors of older drivers' involvement in rapid deceleration events including measures of vision, cognitive function and driving confidence (A. Chevalier et al., 2016) [1]. In naturalistic driving studies such as this, when sample size is not large enough to allow crashes to be used to investigate driver safety, rapid deceleration events may be used as a surrogate safety measure. Naturalistic driving data were collected for up to 52 weeks from 182 volunteer drivers aged 75-94 years (median 80 years, 52% male) living in the suburban outskirts of Sydney. Driving data were collected using an in-vehicle monitoring device. Accelerometer data were recorded 32 times per second and Global Positioning System (GPS) data each second. To measure rapid deceleration behavior, rapid deceleration events (RDEs) were defined as having at least one data point at or above the deceleration threshold of 750 milli-g (7.35 m/s2). All events were constrained to a maximum 5 s duration. The dataset provided with this article contains 473 events, with a row per RDE. This article also contains information about data processing, treatment and quality control. The methods and data presented here may assist with planning and analysis of future studies into rapid deceleration behaviour using in-vehicle monitoring
    corecore