3,686 research outputs found

    The 2dF gravitational lens survey

    Get PDF
    The 2 degree Field (2dF) galaxy redshift survey will involve obtaining approximately 2.5 x 10^5 spectra of objects previously identified as galaxy candidates on morphological grounds. Included in these spectra should be about ten gravitationally-lensed quasars, all with low-redshift galaxies as deflectors (as the more common lenses with high-redshift deflectors will be rejected from the survey as multiple point-sources). The lenses will appear as superpositions of galaxy and quasar spectra, and both cross-correlation techniques and principal components analysis should be able to identify candidates systematically. With the 2dF survey approximately half-completed it is now viable to begin a systematic search for these spectroscopic lenses, and the first steps of this project are described here.Comment: PASA (OzLens edition), in press; 4 pages, 0 figure

    Sloan Digital Sky Survey Spectroscopic Lens Search. I. Discovery of Intermediate-Redshift Star-Forming Galaxies Behind Foreground Luminous Red Galaxies

    Full text link
    We present a catalog of 49 spectroscopic strong gravitational lens candidates selected from a Sloan Digital Sky Survey sample of 50996 luminous red galaxies. Potentially lensed star-forming galaxies are detected through the presence of background oxygen and hydrogen nebular emission lines in the spectra of these massive foreground galaxies. This multiline selection eliminates the ambiguity of single-line identification and provides a very promising sample of candidate galaxy-galaxy lens systems at low to intermediate redshift, with foreground redshifts ranging from 0.16 to 0.49 and background redshifts from 0.25 to 0.81. Any lenses confirmed within our sample would be important new probes of early-type galaxy mass distributions, providing complementary constraints to those obtained from currently known lensed high-redshift quasars.Comment: 23 pages; to appear in The Astronomical Journal, 2004 April. Version with full-resolution figures available at http://web.mit.edu/bolton/www/speclens.ps.gz (PostScript) or http://web.mit.edu/bolton/www/speclens.pdf (PDF

    Precision Determination of the Mass Function of Dark Matter Halos

    Full text link
    The predicted mass function of dark matter halos is essential in connecting observed galaxy cluster counts and models of galaxy clustering to the properties of the primordial density field. We determine the mass function in the concordance Λ\LambdaCDM cosmology, as well as its uncertainty, using sixteen 102431024^3-particle nested-volume dark-matter simulations, spanning a mass range of over five orders of magnitude. Using the nested volumes and single-halo tests, we find and correct for a systematic error in the friends-of-friends halo-finding algorithm. We find a fitting form and full error covariance for the mass function that successfully describes the simulations' mass function and is well-behaved outside the simulations' resolutions. Estimated forecasts of uncertainty in cosmological parameters from future cluster count surveys have negligible contribution from remaining statistical uncertainties in the central cosmology multiplicity function. There exists a potentially non-negligible cosmological dependence (non-universality) of the halo multiplicity function.Comment: 4 pages, 3 figures, submitted to ApJ

    Modeling Reactive Wetting when Inertial Effects are Dominant

    Full text link
    Recent experimental studies of molten metal droplets wetting high temperature reactive substrates have established that the majority of triple-line motion occurs when inertial effects are dominant. In light of these studies, this paper investigates wetting and spreading on reactive substrates when inertial effects are dominant using a thermodynamically derived, diffuse interface model of a binary, three-phase material. The liquid-vapor transition is modeled using a van der Waals diffuse interface approach, while the solid-fluid transition is modeled using a phase field approach. The results from the simulations demonstrate an O \left( t^{-\nicefrac{1}{2}} \right) spreading rate during the inertial regime and oscillations in the triple-line position when the metal droplet transitions from inertial to diffusive spreading. It is found that the spreading extent is reduced by enhancing dissolution by manipulating the initial liquid composition. The results from the model exhibit good qualitative and quantitative agreement with a number of recent experimental studies of high-temperature droplet spreading, particularly experiments of copper droplets spreading on silicon substrates. Analysis of the numerical data from the model suggests that the extent and rate of spreading is regulated by the spreading coefficient calculated from a force balance based on a plausible definition of the instantaneous interface energies. A number of contemporary publications have discussed the likely dissipation mechanism in spreading droplets. Thus, we examine the dissipation mechanism using the entropy-production field and determine that dissipation primarily occurs in the locality of the triple-line region during the inertial stage, but extends along the solid-liquid interface region during the diffusive stage

    A New Einstein Cross: A Highly Magnified, Intrinsically Faint Lyman-Alpha Emitter at z=2.7

    Get PDF
    We report the discovery of a new Einstein cross at redshift z_S = 2.701 based on Lyman-alpha emission in a cruciform configuration around an SDSS luminous red galaxy (z_L = 0.331). The system was targeted as a possible lens based on an anomalous emission line in the SDSS spectrum. Imaging and spectroscopy from the W. M. Keck Observatory confirm the lensing nature of this system. This is one of the widest-separation galaxy-scale lenses known, with an Einstein radius of ~1.84 arcsec. We present simple gravitational lens models for the system and compute the intrinsic properties of the lensed galaxy. The total mass of the lensing galaxy within the 8.8 +/- 0.1 kpc enclosed by the lensed images is (5.2 +/- 0.1) x 10^11 M_sun. The lensed galaxy is a low mass galaxy (0.2 L*) with a high equivalent-width Lyman-alpha line (EW_Lya_rest = 46 +/- 5 Angstroms). Follow-up studies of this lens system can probe the mass structure of the lensing galaxy, and can provide a unique view of an intrinsically faint, high-redshift, star-forming galaxy at high signal-to-noise ratio.Comment: ApJ Letters, in pres

    Impact of Pneumococcal Conjugate Vaccines on Pneumonia Hospitalizations in High- and Low-Income Subpopulations in Brazil.

    Get PDF
    BackgroundPneumococcal conjugate vaccines (PCVs) are being used worldwide. A key question is whether the impact of PCVs on pneumonia is similar in low- and high-income populations. However, most low-income countries, where the burden of disease is greatest, lack reliable data that can be used to evaluate the impact. Data from middle-income countries that have both low- and high-income subpopulations can provide a proxy measure for the impact of the vaccine in low-income countries.MethodsWe evaluated the impact of PCV10 on hospitalizations for all-cause pneumonia in Brazil, a middle-income country with localities that span a broad range of human development index (HDI) levels. We used complementary time series and spatiotemporal methods (synthetic controls and hierarchical Bayesian spatial regression) to test whether the decline in pneumonia hospitalizations associated with vaccine introduction varied across the socioeconomic spectrum.ResultsWe found that the declines in all-cause pneumonia hospitalizations in children and young and middle-aged adults did not vary substantially across low and high HDI subpopulations. Moreover, the estimated declines seen in infants and young adults were associated with higher levels of uptake of the vaccine at a local level.ConclusionsThese results suggest that PCVs have an important impact on hospitalizations for all-cause pneumonia in both low- and high-income populations

    UV excess galaxies: Wolf-Rayet galaxies

    Get PDF
    We discuss V and R band photometry for 67% of the Sullivan et al. 2000 SA57 ultraviolet-selected galaxy sample. In a sample of 176 UV-selected galaxies, Sullivan et al. 2000 find that 24% have (UV-B) colors too blue for consistency with starburst spectral synthesis models. We propose that these extreme blue, UV excess galaxies are Wolf-Rayet (WR) galaxies, starburst galaxies with strong UV emission from WR stars. We measure a median (V-R)=0.38+-0.06 for the UV-selected sample, bluer than a sample optically selected at R but consistent with starburst and WR galaxy colors. We demonstrate that redshifted WR emission lines can double or triple the flux through the UV bandpass at high redshifts. Thus the (UV-B) color of a WR galaxy can be up to 1.3 mag bluer at high redshift, and the expected selection function is skewed to larger redshifts. The redshift distribution of the extreme blue, UV excess galaxies matches the selection function we predict from the properties of WR galaxies.Comment: 4 pages, including 4 figures. Uses AASTeX and emulateapj5.sty. Includes referee change
    corecore